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Abstract

Modern-day web applications rely heavily on RESTful APIs to facilitate communication between
back-end code running on the server and front-end code running on browsers, mobile phones, or
desktops. RESTful APIs are usually formally specified so that the back end and front end can be
developed independently and in parallel. Therefore, it is critical to ensure that the RESTful API
implementations conform to the specification and that the specification is written “correctly”!.
Traditionally, the specification conformance of RESTful API implementations is approximated
via testing, which requires substantial maintenance labor and cannot provide proof of correctness.
This thesis aims to formally verify the property. I propose a static white-box analysis tool,
RESTASSURED, that formally verifies a RESTful API service implemented with Express.JS in
JavaScript against its OpenAPI specification. Specifically, RESTASSURED verifies that for each
specified endpoint, the implementation must contain the corresponding route handler, and for any
valid request defined in the specification, the implementation must also produce a specified response.
Using 19 synthetic benchmarks, we show that RESTASSURED is accurate in verifying the
conformance property and detecting discrepancies. When a violation is found, or when the
implementation disagrees with the specification, RESTASSURED can generate actionable feedback
to the user, including concrete counterexamples to help the user understand and reproduce the
discrepancy. We also show that RESTASSURED scales quadratically with the number of endpoints

and can handle complicated programs with close to 1,000 branches in less than a minute.

1«Correctly” is quoted here, because specifications are by definition always “correct”. In this thesis, an “incorrect”
specification is either incomplete or (if written after implementation) fail to correctly describe the implementation.
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Chapter 1

Introduction

If the comment and code disagree, both are probably wrong.

— Bjarne Stroustrup, in CppCon 2017 Opening Keynote [20]

1.1 Motivation

Modern-day web applications are usually separated into a front end and a back end, as exemplified
in Figure 1.1. The two are also referred to as the client and the server, respectively. The separation
of the two is a perfect example of separation of concerns, a design principle in software engineering
that separates a program into different sections, such that each section addresses a separate concern.
The front end is the part of the application that runs in user’s browsers or mobile phones, directly
interacts with the user, and renders the UI given data pulled from the backend. The back end, on
the other hand, is the part that runs on the server, processes business logic, and feeds data to the
front end. The separation allows the front end and the back end to be developed independently and
in parallel, even by different teams with different levels of expertise. Naturally, the two pieces of
software need to communicate with each other with some type of interfaces, known as Application
Programming Interfaces (APIs). The most common type of API interface for this purpose is the
REST API [36]. Contrary to popular beliefs, the REST API is not a well-defined standard, but a
set of design principles to create web services that are scalable, stateless, and platform-independent.

In order for the front end and the back end to be developed independently, the API must be
well-documented, and the documentation must be kept up-to-date with the implementation. The
front-end developers must be able to know what data are to be sent to the back end and what data
to expect in the responses, and possible types of errors to be handled when things go wrong'. In
practice, the documentation is usually written in the form of a formal specification, or a machine-

readable and unambiguous format, known as OpenAPI specifications [68] that describes the APT’s

11t is important for the front-end developer to know the set of possible errors, so they can handle them properly.
For example, for errors like 401 Unauthorized, 403 Forbidden, the front end should present a nice prompt to the user,
e.g. “username/password incorrect”, “you do not have permission to view this page”. For other errors like token
expired, the front end should automatically refresh the token and retry the request.

0x08
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Figure 1.1: The general structure of a modern web application, which separates the front end and
the back end. The front-end clients may run on heterogeneous platforms, such as web browsers
or mobile apps. The back-end server listens for incoming requests from the front end, processes
the requests, queries the database if necessary, and sends back responses to the front end. In this
example, the front end and the back end communicate via RESTful HTTP requests and responses.

endpoints, parameters, and responses. Needless to say, for the front end and the back end to work
together, the back end must implement the APIs according to the specification, and the specification
must be written “correctly”.

However, both of these tasks are challenging. It is quite common to write “incorrect”
specifications or implement the APIs incorrectly, even for experienced programmers; and it is hard
to implement a program fully conformant to specifications. When an implementation disagrees with
the provided specification, at least one of these two things (and quite possibly both at the same

time, as the chapter epigraph suggests) is happening:

1. The programmer implemented the APIs incorrectly according to the specifications. For
example, their code may be unable to handle certain types of input specified; or they may

return a type of response not specified.

2. Alternatively, the specifications may be written “incorrectly”. Although specifications are by
definition the ground truth and always “correct”; in reality, specifications are often vague, not
kept up-to-date with implementations, incomplete, or even missing or internally inconsistent
[17, 55], which we shall collectively refer to as “incorrect”. In fact, writing a ‘correct’

specification is very difficult, and the difficulty is often underappreciated [17].
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In either case, the frontend developers would not know how to handle the errors properly, leading
to unexpected behaviors in the frontend. To make it worse, these errors often do not surface until
the application is in production, and the frontend developers are left to debug the issue with little
information. This is the problem we aim to address in this thesis.

In this thesis, we propose a static white-box analysis tool, RESTASSURED, that formally
verifies the conformance property of RESTful API implementations to their specifications. It is
a white-box analysis tool in that it takes in both the specification and the source code of the
implementation; unlike black-box testing, which only has access to a binary or a running instance
of the implementation. It is static in that it does not run the program, but rather examines the
source code and executes it symbolically. It is a formal verification tool in that it uses formal
methods like symbolic execution to prove the correctness of the implementation with respect to the
specification, or prove disagreements between the two (known as “specification nonconformance”).
Specifically, RESTASSURED targets server-side RESTful API implementations written in the
library Express.JS and specifications written in OpenAPI format. RESTASSURED builds upon
a custom symbolic execution engine, which targets a restricted subset of JavaScript/TypeScript
language that is commonly used in Express.JS applications, which we define formally and name
RESTSCRIPT. RESTASSURED is sound, meaning that if it reports specification conformance, then
the implementation and specification indeed agrees with each other. However, it is not complete,
meaning that it may not be able to prove conformance for some implementations even when it agrees

with the specification.

1.1.1 A Minimal, Concrete Example

Real-world server-side code is often complicated. They are loaded with layers of abstractions and
indirections; and have to interact with databases, caches, and other external services. To illustrate
the problem clearly, we shall use a minimal, concrete example of a RESTful API endpoint for user
authentication written in JavaScript, as shown in Listing 1.1.

Consider the server-side JavaScript code in Listing 1.1. The code implements a login endpoint
that takes in a username and a password and returns an HTTP 200 OK with success message if the
username and password match (L55). When the username or the password is missing, the server
returns a 400 error (L49), and when the username and the password do not match, the server returns
a 401 error (L57).

This API endpoint is formally specified in the function comments in a format similar to OpenAPI
specifications [68, 74]. The comments (L5-L44) describes the endpoint’s path, HTTP method,
request schema, and all possible responses with each schema. Ideally, the developer should include
one such comment for each API endpoint in the project. Then, the actual OpenAPI specification is
generated from all these function comments using tools like [97]. The actual OpenAPI specification
generated from the example is shown in Appendix A.

However, observe that the specification is incomplete as it omits the case of HTTP 400 response
when the username or the password is missing. With an incorrect specification, the frontend

developers would not know that the server could return a 400 error. Hence, the frontend developer
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import express from "express";
const app = express();

/%%
* Qopenapi
* /login:
* post:
summary: Login to the application.
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
username:
type: string
password:
type: string
responses:
200:
description: Login successful.
content:
application/json:
schema:
type: object
properties:
message:
type: string
description: A success message.
username:
type: string
description: Username.
401:
description: Login failed
content:
application/json:
schema:
type: object
properties:
message:
type: string
description: An error message.

EEE SR R S R R R R I S U R R R R D D R R N I I D R

*/
app.post("/login", (req, res) => {
const { username, password } = req.body;

if (lusername || !password) { // field missing
res.status(400) . json({ message: "Malformed request" });
return;

}

const user = users.find(/* ... simulate database check ... */);

if (user) { // found

res. json({ message: "Login successful", username });
} else { // not found

res.status(401).json({ message: "Login failed" });
s}

b

Listing 1.1: A RESTful API endpoint for user authentication written in JavaScript. The comments provide a
formal specification in OpenAPI format. Observe that the HT'TP 400 response is left out in the specification,
rendering the specification incomplete.
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cannot handle the 400 error properly, leading to unexpected behaviors in the frontend. The reader
could also observe how complicated the specification already is, even for such a simple API endpoint,

and how easy it is to make mistakes in the specification.

1.1.2 Personal Motivation

This work is motivated by my own experience leading and developing web applications for the
student club Williams Students Online (WSO)?.

To share a personal anecdote, in 2022, Prof. Bill Jannen told me that he cannot access the WSO
website, which shows a blank page for him. The same issue was reported by a few other users as
well. They shared one commonality: they have all been logged in to WSO for over half a year at the
time, and it turns out that their logins have expired. WSO issues and uses two types of tokens, a
short-lived API token for access into different WSO services and a long-lived identity token attached
to the user logins. The short-lived token expires within hours and needs to be refreshed using the
identity token. The front-client code is able to refresh the short-lived token automatically, but
when the identity token expires, refreshing the short-lived token would fail with a 401 Unauthorized
error. The front-end code should have caught this error, deleted the expired identity token from
the browser cache, and prompted the user to log in again. However, not expecting this error, the
front-end code failed silently, rendering a blank page to the user since it does not have a short-lived
token to fetch content from the server with. This led to much user frustration as the issue would
persist even if the user refreshes the page, and the user would have to manually clear the browser
cache as a workaround. I fixed the bug later by adding in this missing error handling logic [93].

It turns out that the similar issue is present throughout the WSO codebase. In addition to
the defined HTTP status codes, many endpoints return custom status codes, such as 1351 for
authentication failure, 1401 for user not in student scope, and 1404 for user not in OnCampus scope.
However, these custom status codes are not documented in the OpenAPI specification, and the
front-end developers have no idea that these codes may be returned. As a result, the front-end
code does not know how to handle these custom status codes properly. This leads to unexpected
behaviors in the front end, such as showing a blank page, or redirecting the user to a general error
page, without fixing the underlying error. I could in principle go around the specification and add
in the missing status codes to the front-end codebase. However, this is not a scalable solution, and
the issue would likely resurface in the future. It would be much better if the front-end developers
could know with confidence what the server may return, so they will not be caught in surprise when

things go wrong.

1.2 Goal and Contributions

In this thesis, we propose a tool named RESTASSURED that formally verifies the conformance
of server-side RESTful API implementations to their OpenAPI specifications. In other words,

2The WSO website is accessible at https://wso.williams.edu/. Our codes for the frontend repository and our REST
API client are open sourced on GitHub under organization https://github.com/WilliamsStudentsOnline/.
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RESTASSURED checks whether the server-side code has implemented all of the endpoints in the

specification, and whether the responses produced by the server, given a valid specified request, are

in accordance with the specification. The goal of RESTASSURED is to help frontend developers to

know with confidence what the server may return, so they will not be caught in surprise when things

go wrong. If the server implementation is not conformant to the specification, RESTASSURED will

report the discrepancies to the developers with counterexamples to assist them in identifying and

fixing the issues.

Our contributions can be summarized as follows:

We formally define the conformance property with regard to some OpenAPI specifications and
some RESTful API implementations.

In addition to the conformance property, we identify some other properties that indicate
disagreements between the implementation and the specification, such as unspecified endpoints

and overspecified responses.

We propose and formally define a restricted subset of the JavaScript language that is commonly

used in Express.JS applications, which we name RESTSCRIPT.

We have built a symbolic execution engine for RESTSCRIPT, which serves as a key component

in RESTASSURED.

We have built RESTASSURED, a static white-box analysis tool that uses symbolic execution
to check for conformance of server-side RESTful API implementations to their OpenAPI

specifications.

We evaluate RESTASSURED on a set of synthetic and real-world benchmarks, showing that
it is accurate, produces actionable outputs, and scales to complicated applications with large

number of branches.
We discuss the limitations of RESTASSURED and propose future works to address them.

We share our experience in building RESTASSURED and discuss some of the challenges we

faced and lessons we learned.

1.3 Organization

This thesis is organized as follows:

Chapter 1 (this chapter) provides an introduction and motivation behind this work.
Chapter 2 goes into detail on the background of modern Web Services and RESTful API

services; the evolution of specifications, especially formal specifications like OpenAPI specifications;

and formal verification techniques like symbolic execution.
Chapter 3 formally defines our problem. It formalizes the RESTful API specification; the
conformance properties; RESTSCRIPT, the restricted subset of JavaScript/TypeScript language our

static analysis tool targets; and the behaviors of the Express.JS library we model.
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Chapter 4 describes the algorithm and general workflow of RESTASSURED. It details
our preliminary work in building a symbolic execution engine for RESTSCRIPT, including the
specific symbolic execution techniques and optimization methods we use. It also describes how
RESTASSURED generates symbolic requests, performs symbolic execution on the server-side code to
produce symbolic responses, and checks for conformance with the OpenAPI specification.

Chapter 5 describes the implementation detail of the tool, including how we parse RESTSCRIPT
code, how we symbolically execute the server program as well as request handlers, and how we check
the set of responses generated by the server. It also describes how we handle many implementation
challenges, such as building an internal model for Express.JS.

Chapter 6 evaluates the tool from three aspects: the accuracy of our verification algorithm, the
performance of the tool in practice, and its usability. It also discusses how we build the synthetic
benchmarks, drawing inspiration from real-world applications.

Lastly, chapter 7 concludes the thesis with discussions of limitations, future works, and many

takeaways I have learned throughout the process.



Chapter 2
Background

Program testing can be a very effective way to show the presence of bugs, but it is hopelessly
inadequate for showing their absence. The only effective way to raise the confidence level
of a program significantly is to give a convincing proof of its correctness.

— Edsger Dijkstra, 1972 Turing Award Lecture [27]

2.1 Web Services and RESTful APIs

Web services are software systems that provides communication interfaces for other software systems
on the Internet. They have played a crucial role in the modern day Web [58, 62]. Most major web
services, like Google, Microsoft, Amazon, Twitter, Salesforce, and Slack, have all offered varieties of

public web APIs for automated access to their web resources.

Early web services were designed based on the Simple Object Access Protocol (SOAP) [22].
SOAP is a simple XML-based protocol that exchanges web information via HTTP and RPC. A
SOAP service is said to be operations-oriented, in that it exposes operations or actions to the user.
For example, if a user wants to create a post in an online forum, the SOAP API might expose a

function like CreatePost.

Over the last decade, web services have rapidly switched to the Representational State Transfer
(REST) [36] architectural principles [58, 62]. According to a paper in 2021, 95.8% of the APIs
provided by the Alexa.com top 4000 most popular sites are RESTful [71]. Web Services conforming
to the REST principles will offer a set of Application Programming Interfaces (APIs). Hence, they
are commonly referred to as Web APIs, REST APIs, or RESTful APIs [37]. Unlike SOAP, REST
is data-oriented, in that it exposes Web resources named by URLs. In addition, REST is not a
protocol but a set of architectural principles. It utilizes the HTTP methods (e.g. PUT, GET, POST,
DELETE) on a given URL and maps them to the respective CRUD (Create, Read, Update, and
Delete) operations. Thus, for the same example where a user wants to create a post in an online

forum, the RESTful API may expose an API endpoint /api/v1/post, and the user can send an

0x0F
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HTTP PUT! request to create the post.

In more recent years, the use of RESTful APIs have surged due to the emergence of Software-
as-a-Service (SaaS), which prompted developers to leverage third-party software. For example, a
developer may use Stripe APIs to handle payments, or invoke Slack APIs to send push notifications
[43]. According to a few industrial report and surveys [80, 85, 95] conducted in the past two years,
75.1% of participants across all industries have worked on internal APIs, 53.9% of participants have
worked on third-party APIs, and 75.7% participants report that the API economy is or will be a
prioritization of their organization [35]. 86% respondents have used REST, whereas only 26% used
SOAP [30].

With great popularity, the correctness of RESTful APIs have also become a concern more than
ever before. In Smartbear’s report, 78% of respondents found API Quality to be Very Important
or Extremely Important [95]. However, according to Postman’s report, only 45% of respondents
have reported their deployment failure rate to be less than 5% [30]. Along the process, problems of
RESTful APIs have also surfaced. Since REST is only a set of architectural principles without formal
standards or specifications, it is up to the API service developers to make many crucial decisions. In
many cases, this lead to poor design decisions, such as using the same HTTP method for retrieval and
deletion, inconsistent naming conventions, and more importantly, lack of a standard documentation
means [71]. In the 2023 report published by Postman, the most popular API developing tool, 52%
of respondents said lack of documentation was the biggest problem for them when using the APIs of
others [380]. According to another report published by Smartbear, the company behind Swagger, in
2023, developers report that “confidence in documentation provided for API consumers has decreased
year over year”, where less than half of the respondents report that they have good documentation

for their consumers [95, p. 54].

2.2 Formal Verification

Ensuring the correctness of software is a long-standing problem in computer science. Today, the most
common approach to ensure correctness is testing. We may write or systematically generate different
types of test cases (unit tests, stress tests, proper-based testing, fuzzing) to examine the software’s
behavior under different inputs and conditions. However, testing can only show the presence of bugs,
but not their absence. Instead, one should seek a proof of the program’s correctness, as Dijkstra
famously claims in his 1972 Turing Award lecture (the original quote is included as the epigraph of
this chapter) [27].

Another approach to ensure the correctness of a program once and for all is formal verification.
Formal verification refers to using mathematical logic and automated tools to prove that a
program satisfies a certain property. In our case, we aim to prove the property of specification
conformance. Usually, formal verification involves two main steps, formalization and verification.

During formalization, the program is first translated into a representation amenable to automated

I According to the REST principles, the API should always use PUT for creation, and POST should be reserved for
updates only. However, many services use HT'TP POST for all write actions, including creation, update, and deletion
[71]. In reality, the user might be asked to send an HTTP POST request instead.
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reasoning. Then, automated tools such as theorem provers and model checkers are employed to

prove the property of the program leveraging the formal model.

2.2.1 Genealogy of Formal Verification

The idea of formal verification, i.e. proving that programs are correct using math and logic, has been
around for a long time. Some claim it can be traced back to the pre-electronic phase of “Charles
Babbage’s and Ada Lovelace’s work on the difference and analytical engines” to verify “the formulae
placed on the [operation] cards” [8]. A perhaps more complete and workable method is presented by
Alan Turing in 1949 to prove the correctness of a factorial algorithm based on additions [69, ].
However, it is not until the 1960s and 1970s that systematic techniques are developed by Peter Naur
[70], Robert Floyd [38], and C.A.R. Hoare [16].

Among all formal systems, the Hoare logic [46] (sometimes also known as Floyd-Hoare logic) is

perhaps the most influential. At its core is a notation system later known as the Hoare triplet:

P{Q}R

where P is the precondition, @ is the program, and R is the postcondition, or the result of execution.
According to Hoare, “if the assertion P is true before initiation of a program @), then the assertion R
will be true on its completion” [46, p. 577]. It shall also be noted that the Hoare logic only concerns
partial correctness, i.e. if the program terminates, then the postcondition should be satisfied. To
establish total correctness, one must also prove that the program terminates. The termination
proof is a much harder problem and cannot be proved for all programs since the halting problem
is undecidable. Therefore, a better way to understand the Hoare logic is: if the precondition P is

true, and the program @ terminates, then the postcondition R will be true.

2.2.2 Formal Verification Techniques

There exists a wide array of formal verification techniques. Formal verification techniques can be
broadly classified into three categories: model checking, theorem proving, and symbolic execution
[72, ]. This thesis will focus on symbolic execution, as it is the most suitable technique for
verifying RESTful APIs.

Model checking [16] checks a finite-state model of the target system to ensure that it satisfies a
specification expressed using propositional temporal logic like Linear Temporal Logic (LTL) [79]. Tt
does so by searching through all possible states of the system, usually treated as a state transition
graph, to check if the property holds in all states. However, model checking often requires some
form of abstract and finite-state model of the system, which can be hard to construct for complex
systems. As a result, it often requires the programmer to provide the model manually or at least
some annotations for the automatic synthesis/construction of the model. For systems that are
constantly evolving, like web services, keeping the models and/or annotations up-to-date with every
change in the target system can be a daunting task and may not be feasible. At the end of the day,

model checking is only as good as the model itself. It only reasons about a model that may not fully
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capture necessary details of the target system [77].

Theorem proving, on the other hand, transforms the program and its specification into a set of
logical formulas. It often requires the programmer to write some machine-checkable proofs to prove
to the theorem prover that the program satisfies the specification. Theorem proving is often more
powerful than model checking, as it supports a richer set of formalisms that are not in principle

solvable in automated methods like model checking. Some of the most well-known theorem provers

and proof assistants include Coq [19], Isabelle [73], and Lean [25]. There also exist verifiers that do
not require the programmer to write proofs, such as ESC/Java [37], Dafny [57], and the deductive
proof plugin (WP) of Frama-C [21]. In these cases, the programmer need only provide annotations for

their programs; such as preconditions, postconditions, and invariants; and the verifiers will generate
the proof obligations and check if they are satisfied using an automated theorem prover like Z3 [24]
or Alt-ergo [18].

Last but not least, symbolic execution systematically explores all possible execution paths of
a program to reason about the program’s behavior or to generate concrete test case inputs that
lead to certain program behaviors. [4]. It executes programs with symbolic inputs instead of
concrete inputs, either statically or dynamically. It may even concolically execute the program,
by combining symbolic execution with concrete execution for certain parts of the program [91]. The
symbolic execution engine represents a program’s execution path as a symbolic formula (known as
path constraints or path predicates). Eventually, a model checker, typically a SMT solver, is used to
check if the program satisfies the desired property along each execution path, and whether the path
constraint is satisfiable, thus whether the path is reachable.

Of the three types of formal verification techniques, symbolic execution is the most suitable
for building a low-effort RESTful API specification conformance verifier. Model checking often
faces fidelity issue as the models are often overly simplified and does not accurately represent the
actual target system running on actual machines interacting with its environments. Alternatively,
the programmer can manually construct formal models of the system, which is time-consuming
and can be hard for most programmers who have not received formal training in logic and formal
methods. Theorem proving similarly requires the programmer to write machine-checkable proofs
or annotations, which is even more daunting and time-consuming. Symbolic execution, on the
other hand, only requires the program and the specification. The symbolic execution engine will
automatically generate all possible execution paths from the program and check if the program
satisfies the specification. However, while symbolic execution does not suffer from fidelity, it does
suffer from scalability issues, which we will need to address.

It is a commonly shared impression that formal verification methods are very costly and time-
consuming, and are not practical for most real-world software development other than critical
systems like avionics, medical devices, and nuclear power plants [77, 82, 86]. However, perhaps
every programmer is using some formal systems on a daily basis. The most common, yet often
overlooked, formal system are type checkers. Type checkers ensure that the program is free of type
errors. For example, a type checker ensures that an integer cannot be used in the place of a string, or
that a function expected to return an array does not return a dictionary. Like other types of formal

verification techniques, the programmer is often required to provide some form of annotations (in
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the form of type declarations) to the type checker. For example, in TypeScript, the programmer

must provide type annotations as shown in Listing 2.1.

function add(a: number, b: number): number {
return a + b;

}

5 let x: number;

x = 1; // OK

x="'1"; // Error: Type 'string' is not assignable to type 'number'.

x = add(1, 2); // OK

x = add(1, '2'); // Error: Argument of type 'string' is not assignable to
// parameter of type 'number'.

x = add(1); // Error: Expected 2 arguments, but got 1.

Listing 2.1: Example of TypeScript type annotations and type errors

Unfortunately, type checking alone is not sufficient to ensure the specification conformance of a
program. This is because the RESTful API specification not only specifies the types of the input and
output, but also (sometimes) specifies value constraints, and behaviors the program. For example,
the specification may require a field to be an enum of a certain set of values, or a number to be in
a certain range. These attached predicates are only expressible in a refinement type system [12].
In addition, the specification may require the program to authenticate the user with a token, or to
return an HTTP 401 response if no token is included/token is invalid; which requires a dependent
type system [109]. These type systems are much more expressive than the nominal type systems
used in most languages, however they are also less decidable and require more power techniques to
check against. As a result, we choose to employ more powerful formal verification techniques like

symbolic execution to ensure the specification conformance of RESTful APIs.

2.3 Documentation and (Formal) Specifications

Documentation and specifications are traditionally deemed as separate documents. Documentation
are written for humans, either consumers or subsequent maintainers of the software, to understand
and use the software. It is vaguely defined and exists in many forms, architectural description of the
software, examples, step-by-step tutorials, design decisions, user requirements, ...[26]. In this thesis,
we focus narrowly on the user-facing documentation. For example, quick start guides, functional
descriptions on how to use the software, and interactive interfaces for developers to run example API
calls [19]. On the other hand, specifications are usually part of the design process, specifying how
the software is to behave, and the formats for input/output [19]. They are usually consumed by the
developers implementing the software and testers carrying out functional tests. Sometimes, they are
written in machine-readable formats, so the testing process is automated by machines rather than
human.

However, the line between documentation and specification are blurred in the field of Web APIs,

with the emergence of agile development and the need to ship products rapidly within a limited
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timeframe. In recent years, many developers, especially those in small group settings, have opted to
use informal channels instead of well-formed documentations [26]. In these settings, documentation
and specification are no longer hand written by human. Thanks to the automation technology
commonly deployed in present-day RESTful Web API development, developers often generate
documentation [101] and specifications [97, 100] automatically from code comments. For many small
teams, these code comments are often written alongside, or even after their software implementation,
instead of generated in a separate design phase. Thus, their specification are generated afterwards
rather than beforehand during design phase. Therefore, it is the codes rather than the specifications
that genuinely reflect the intentions and behaviors of the API designers and/or developers. Some
even argue that these API “specifications” are instead API “definitions” [419]. In this thesis, I shall
continue to use the term “specification”, but I ask the readers to bear in mind when they see this

word and how its meanings have subtly changed in the world of Web APIs.

2.3.1 Documentation

Writing good documentation has long been a concern for the software engineering community
[17, 26, 39, 66]. Developers have always disagreed with each other on what constitutes a good
documentation. Some developers favor detailed documentation, so they may continue to maintain
legacy software products or migrate them easier. This view has long been the mainstream and
incorporated into best practices for development and maintenance. Others developers, under the
influence of agile development, rely more on informal communication rather than documentation.
Nonetheless, most of them can agree that “specifications and documentation are frequently missing,

vague, or outdated” [17].

Documentations exist in very different forms. Although many researchers have traditionally
emphasized the importance for documentation to describe the hierarchical architecture of the system
[102], surveys have surprisingly shown that such documentation are less valued by developers.
Instead, “source code and comments are the most important artifact to understand a system to

be maintained. Data model and requirement description were other important artifacts” [26].

In the case of RESTful APIs, the most popular form of documentation is usually an interactive
web page generated by Swagger UI [101] from an OpenAPI specification (which is often generated by
Swagger from code comments). It is a web interface that lists each API endpoints, their respective
input parameters, request bodies, and all possible responses. For each possible response, it lists the
HTTP response code, the description, and an example of returning values. For example, Figure 2.1
shows the Swagger UI documentation generated from the Motivating Example in Listing 1.1.
Furthermore, it allows developers and consumers to interactively send requests to the API endpoint
and view the responses, as shown in Figure 2.2. When encountering undocumented responses,
Swagger UI will also display an “undocumented” warning next to the response code, as shown in
Figure 2.2b.
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POST /login Login to the application. A

Parameters Try it out ‘

No parameters

‘ Request body i< application/json VI ‘

Example Value Schema

{

"username": "string",

"password”: "string”

}

Responses
Code Description Links
200 Login successful. No links
Media type
application/json v

Controls Accept header.

Example Value Schema

{
"message": "string",

"username": "string"

}

401 Login failed No links

Media type

application/json v ]

Example Value Schema

{

"message": "string"

}

Figure 2.1: Swagger Web Ul documentation generated from the Motivating Example in Listing 1.1.
It documents the API endpoint, input parameters, request body schema, and all possible responses
(HTTP code and response body schema).
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“password1” )
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Request URL
http://localhost:3008/Login
http://localhost:3000/1ogin

Server response
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Code Details
Code Details
400
- €  Error: Bad Request

Response body

" Response body

“message”: "Malforned request

B Download B2 Download

Response headers

application/json; charset=utf-8

Nov 2023 23:07:02 GHT

OLCGAAtdLR2ckV2ZSX6kylDI"
ut=s

x-powered-by: Express

Respomier Tesponer

code Description Links Code Description Links

200 Login successful. No finks 200 Login successful. Nolinks
Media ype Modla ypa

401 Login failed No finks 01 No links
Medi yoe

application/json N

Example Value | chema

“message”: “string"

(a) In this case, the API returns an HTTP 200 (b) In this case, the API returns an undocumented

response with the expected response body.

HTTP 400 response with response body.

Figure 2.2: Swagger Web UI allow users to interact with API endpoints by sending requests and
displaying responses. When encountering undocumented responses, a warning will appear (2.2b).
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2.3.2 Traditional Role of Specifications in Software Engineering

The word “specification” is heavily loaded in the software engineering community and can be used
to refer to many things. At its core, a program specification is a statement whose role is to
say: (1) what purpose the program serves, and (2) how the program can be correctly used [56,
p. 279]. Traditionally, specifications are written by developers or specialized software architects
during the design phase of the software, before it is implemented. Software developers following the
traditional software development lifecycle will often employ the waterfall model, composed of a series
of steps: Software Concept, Requirement Analysis, Architectural Design, Detailed Design, Coding
and Debugging, System Testing [65, p.139]. Depending on the stage of development, specifications
can be written in different levels of details. That includes requirement specifications, product design
specifications, or detailed design specifications, in the order of increasing details [65, p. 168].
However, this puts a lot of burden on the developers to keep the specifications up-to-date with
the refined design and changing requirements. “For a rapid-development project, .. updating the
specification can become a full-time job” [65, p. 139].

In more recent years, the software engineering community has adopted agile or rapid development
methodologies to ship software products faster. Many of these approaches attempt to combat
wasted time on specifications by employing a minimal specification approach, even to the extent
of using “[u|ser manual as spec” [(5, pp. 323-329]. In other words, use the documentation as
the specification. This approach has clearly been adopted by the modern RESTful API developers,
where the lines between documentation, specification, and definition have been blurred by automated
tools like Swagger [19]. These automated tools generate documentation and specifications from
code comments, which are written alongside the code implementation. Thus, the meaning of
“specification” has changed subtly from what it used to be in the traditional software engineering
community. Although the sense of describing program behavior is preserved, it is no longer produced

in a clearly separated requirement analysis and design phase [19, ].

2.3.3 Genealogy of Formal Specifications

Another debate to be had within the software engineering community is the choice between formal
and informal specifications [55, 56]. Formal specifications are written in some variant of formal
notational system, which is usually a programming language like TLA+ [54] or a program logic
like LTL [79]. On the other hand, informal specifications are typically written in plain natural
language. Formal specifications are often considered to be more precise and less ambiguous, given
that internal inconsistencies and contradictions can be mathematically detected. Moreover, they can
be understood by machines programmatically, which allows for automated formal verification. On
the other hand, informal specifications are written for a single type of consumer: humans. Without
the formalism constraints, they may contain diagrams, overviews, and examples that are not easily
expressible in formal notations but facilitate human understanding.

The concept of formal specifications has been around since the 1970s [5, 27]. However,
formal specifications and formal verification still remains a foreign concept to many software

developers to this day, and is rarely adopted in practice. Formal specifications had its roots in
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classical mathematics and logic, whereas software developers see themselves more as engineers than
mathematicians, thus the gap between the two communities [77, 86]. In fact, not just formal
specifications, even informal specifications are known to be hard to write. Customers may change
requirements over time or are unable to specify what they want, the problem may be ill-defined,
or the intended solution may be too complex to be fully understood [65]. When specifications are
formalized, the challenge is even greater. It can even be said that “[w]riting a ‘correct’ [formal]
specification is very difficult - probably as difficult as writing a correct program.” [55, p. 150]. On
the extreme end, [50] argues that specifications are necessarily informal, because writing a formal
specification involves the same formalization process as the implementation. It necessitates a formal
semantics that must be defined a priori, thus requiring the writer to give a precise definition of the
problem and the solution. However, such formal semantics is often foreign to the problem domain,
and must accompany some representational conventions (read: informal natural language) to be
understood by humans. Moreover, the requirement for formal semantics presupposes the existence
of an already fully understood theory of the problem. In reality, the writer often do not have a full
understanding of the problem and the solution before the program is implemented [56]. All of these
factors combined have made formal specifications very hard to write, and often not worth the effort
for traditional general purpose software. For example, formally verifying the stack-space bounds in C
programs turns out to be a nontrivial task, requiring a complicated formal model specifying the stack
consumption of C programs [12]. Microsoft provided .NET users with “Code Contracts” that allow
them to formally specify the pre- and postconditions for .NET APIs, which is then statically verified
[33, 34]. However, this endeavor is abandoned in production, after .NET developers discovered that
despite its powerful formal capacity, “overwhelming usage is about null handling” and decided to

replace it with nullable-reference types [48].

2.3.4 Formal Specifications for RESTful API

RESTful APIs happen to fall within a niche spot where all behaviors conform to the REST principles
and operates over a well-defined HTTP communication channel. Moreover, the input and output
are commonly encoded in JSON format, which is a well-defined data model with a formal schema
and format [9, ]. Thus, a formal semantics for the behaviors of RESTful APIs can be defined
in a relatively straightforward manner. Hence, writing a formal specification for RESTful APIs is
greatly simplified and becomes a feasible task. In many cases, they are automatically generated
from comments in the source code, which are written in a formal format [74]. These comments
are then used to generate both specifications and human-readable, many times even interactive,
documentations. According to a paper in 2021 measuring the APIs provided by Alexa.com top 4000

sites, “nearly half us[e] software to generate the documentation ..., which are, for most cases, also

compatible with the OpenAPT specification” [71, p. 11].
OpenAPI specification (formerly known by its product name “Swagger”) [68] is the most popular
choice of specification format for RESTful APIs [17, 44, 50, 64]. This is also confirmed by industrial

surveys in 2023, in which around 60%-80% of the respondents reported using OpenAPI as their API
specifications [80, p. 52][95, p. 21].
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At a very high level, the OpenAPI specification is very similar to the classical Hoare triplet
introduced in subsection 2.2.1. Since a RESTful API service often has multiple endpoints uniquely
defined by their URL/URI paths and HTTP methods, we can think of each API endpoint as a
program. As a result, the overall specification would be a giant list of specifications for each
API endpoint in the service combined. For each endpoint, the endpoint will expect some inputs,
either in the form of URL query parameters, request body, or headers. These are equivalent to
the preconditions in the Hoare triplet. Take the motivating example in Listing 1.1 as an example,
the API endpoint expects a request body with a JSON object containing the fields username and
password. The implementation of the request handler (and potentially middlewares along the path
of execution) will then serve as the program. When the program halts and returns a response, the
specified response body and status code will be the postconditions, albeit there will be a list of valid
responses (rather than one). In the motivating example, the API endpoint is expected to return
an HTTP 200 response and a JSON object with a field message and username, or an HTTP 401
response with a JSON object with field message.

2.3.5 Details of the OpenAPI Specification

In this thesis, we target the OpenAPI specification version 3.1.0 [68]. OpenAPI specifications are
JSON objects typically represented in json or yaml files. However, in reality, they are often described
as code comments alongside the implementation. The specification files are then generated by
automation tools from these comments [17, 97, ]. An example is given in the motivating example
at Listing 1.1, where the specification is written in the comments above the API endpoint definition.
The generated full specification file is provided as Listing A.1 in Appendix A.

These specifications are often composed of the following parts: Metadata info of the APT’s title,
version, description; Server addresses (omitted in Listing A.1); and individual API endpoints found

by their path. For each API endpoint, the following information should be provided:

1. The HTTP path and method (GET/POST/DELETE/...)
2. A human-readable summary and description

3. List and type of parameters, which can be passed in via URL paths, query strings, headers,

or cookies
4. A requestBody if one is Anticipated, and its object schema.
5. A list of all possible responses with the following fields.

a) HTTP response code (e.g. 200 OK, 401 Unauthorized, 500 Server Error)

(
(b) headers of a list of expected headers with their object schema.

(¢) A human-readable description of this response

)
)
)
(d) The content of the response body, and its object schema. In OpenAPI 3.0 and newer,

one can even specify multiple alternative schema with one0f keyword.
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Then, the object schema can either be defined in-place, or defined separately with a name and
re-used in different places. To define an object schema, the following fields are usually required

(taking JSON as an example, which is the most common APT object schema).

1. The media type of the object, such as application/json

2. A type field specifying whether one object or an array of the specified object is

returned /required
3. A properties field that lists all the names in the JSON object, each with the following fields

a) name of the field

(
(b) type specifying the type of the value
(

(d

(e) Some human-readable example, that could be potentially used for test generation.

)
)
¢) format specifying whether a binary-encoded file is expected
) A human-readable description

)

2.4 Specification Conformance for RESTful APIs

Specification conformance has always been a huge problem. There have been work ever since
the 1970s [27]. However, it is not until recently, with the popularization of Web Services and
Software as a Service (SaaS), that specification conformance has become a topic of widespread
interest. Specification conformance is an important topic of interest to both academia and the
software engineering industry. For industrial programmers, it is important to write programs that
conform to specifications, so their products are successfully delivered to their clients (whether
external customers or internal). More importantly, in the case of web applications and services
that anticipate programmatic communication between software systems, building systems correctly
according to specifications become more important than ever before. Otherwise, the error within a
single system will likely result in a catastrophic chain of errors that propagate along the dependency
chain, especially if the API consumers are not built robustly against errors.

Research work have flourished, with solutions proposed from both academia and industries. Here,
we shall briefly categorize them into two types: testing-based approaches and formal approaches.
In the world of RESTful API conformance, the specification needs to be followed in two separate
systems: the server-side, or the producers/providers of the API; and the client-side, or the consumers
of the API. Hence, the solutions can be further categorized into client-side solutions or server-side
solutions. For client-side, there already exist mature solutions to generate client SDK sending
requests and handling all specified response cases given an OpenAPI specification [99]. Although
the tool also generates server stubs, it is largely insufficient and at best provides a starter template
that saves programmers from re-typing boilerplate codes. At server side, the complicated business
logic and interaction with complicated dependencies (e.g. database operations, time or file dependent
operations) make guarantees hard to come by. In this thesis, we shall primarily focus on the server-

side problem, which is more complicated and more interesting.
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2.4.1 Testing-based approaches

The current standard approaches in industries are all based on testing. According to recent industrial

surveys, 68%—-81% API developers employ testing, and the most testing types are functional and

integration testing [35, 95]. However, most of the industries relied on human testers and Quality
Assurance engineers, and some also uses unit tests [95]. Although there exists automated testing
tools and fuzzers ([94], by the same company behind Swagger), their industrial adoption seems
limited.

Inside academia, the most active methods for specification conformance is also black-box testing.
In a black-box testing, the tester or testing software treats the API provider codebase as a black
box and generates test cases directly from the OpenAPI specification. Then, they run the test
cases against the implementation, and observe its outputs, then compare the outputs to the
specification to determine if the implementation conforms to the specification. Within the software
engineering community, researchers have used a variety of traditional test generation techniques.
These techniques can be further broken down into two usages: generating test data, and generating
test cases. For test data generation, some use example values provided in the OpenAPI specification,
some uses fuzzing, some uses random inputs, and some uses custom data generators, or contextual
data extracted from previous API responses. For test case generation, some use random testing
that assign random values to parameters, some try to satisfy inter-parameter dependencies, or
employ property-based testing. Regarding test oracles, most of the works only check for API server
failures (indicated by HTML 5xx error codes), some also check for response specification conformance
[ » I }

The black-box method is widely popular because no information about the server implementation
is required. Most of the commercial web services only provide formal specifications at best and
do not provide any information about the server implementation. More commonly, they provide
human-readable documentation that are not machine-readable to avoid excessive resource usage
from automated tools. For these cases, third-party clients can only depend upon trust or black-box
testing approaches to gain confidence in the correct behavior of the APIs.

However, program testing as an approach to show the absence of bugs is ineffective. As quoted
in the epigraph of this chapter, “[pJrogram testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their absence. The only effective way to raise

the confidence level of a program significantly is to give a convincing proof of its correctness” [27].

2.4.2 Formal approaches

Let us now turn to the application of formal approaches in the field of RESTful API specification
conformance. The software engineering community is primarily only interested in testing-based
approaches, whereas formal approaches are mostly presented by the programming language
community. However, work in this direction is generally lacking. There are some limited works
that employ formal verification techniques on the client-side [33, ]. However, the client-side code
logic is a lot simpler when compared to server-side. These codes are usually a single function call

(sometimes encapsulated within an SDK) that authors and sends an HTTP request, and parses its
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corresponding response. In most cases, the returning response can be trivially parsed according to
the specification. There even exist automated tools to automatically generate client SDKs according
to OpenAPI specifications [99].

However, work on formal verification of server-side code has been a blank to the best of my
knowledge. Extending the existing approaches from client-side to server-side is nontrivial, given
that the server side contains a lot more complicated business logic and interacts with third-party
middlewares and databases. In addition, verifying the specification conformance property requires
some nontrivial addition to “standard” verification techniques, and requires the verifier to have a
good understanding of the specification, how server-side code processes the input request, and how
responses are stored and produced. Although Swagger CodeGen [99] is able to generate a server-
side code stub, it only provides a bare starting template. In production-grade server codes, the
API response controllers usually have complicated business logic, depending on the type of input
and result interacting with database, sometimes even invoking different functions and returning
different objects. A recent survey paper has suggested employing white-box type-based approaches
that use type checkers to check for generated responses against the schema defined in specification
[17]. However, we argue that nominal type-based approaches does not fully solve the problem, as
it accepts incomplete implementations of a specification and may be unable to handle complicated
branching, inter-procedural dependencies, and conformance to specification’s refinement types. In

response, we shall investigate white-box symbolic execution to provide guarantees to consumers of
the API.

2.4.3 Limitations and Challenges Anticipated

When compared to testing approaches, formal verification is a lot more powerful, as it provides true
guarantees of the absence of bugs. However, it also comes with many limitations in its usage and
adoption, which we will need to address in this thesis. Some of them are inherent to the formal

verification techniques, while some are specific to the RESTful API domain.

Interoperability and Cross-Language Operations RESTful APIs are designed to be
language-agnostic, and can be consumed or produced by any programming language that can send
HTTP requests. As a result, the specification is often written in a language-agnostic format, with
generic types like string, number, and object. However, the formal verification tools are usually
designed for a specific programming language, and we may need to map the generic types to the
specific types of the programming language. For example, OpenAPI may require a field to be of type
integer, but JavaScript does not have an integer type and represents all numbers as floating-point
numbers. There exists past work, Doppio [105], which is a JVM (Java Virtual Machine) written in
JavaScript and runnable in browsers, that aim to solve this problem; but it is out of scope for this
thesis. Furthermore, the RESTful API operation may involve complex data structures like dates,

times, or binary files, which are not easily representable in all programming languages.

Interaction with Nondeterministic Environment A web application is a complex system

that interacts with many external components. For example, the server-side code usually interacts
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with the database (via SQL queries or ORM libraries), third-party middlewares (e.g. for request
authentication). Sometimes, the server-side code also interacts with the file system, the time, the
system random number generator, or other external services that are often nondeterministic. To
fully verify the specification conformance property, we need to model these external components and
their interactions with the server-side code, which is sometimes infeasible or even impossible (if the

system is closed-source).

State Space Explosion While symbolic execution is able to remain faithful to the actual running
program (unlike model checking methods), it suffers from scalability problem during the analysis.
The number of execution paths will increase exponentially with regard to the number of branches.
Given the complicated business logic of web applications, the number of execution paths can be
very large. Moreover, there often exists loops and recursion in the code, which makes static analysis
harder and may lead to infinite execution paths without further information of loop invariants, e.g.

the loop counter’s range, which may help us establish an upper bound on the number of iterations.

No Off-the-Shelf Static Symbolic Execution Engines Unfortunately, no off-the-shelf static
symbolic execution engines exist for JavaScript/TypeScript, our target languages. There are some
academic research projects that attempted to build symbolic execution engines for JavaScript, such
as Kudzu [90], ExpoSE [60], Cosette [39], and JaVerT/Gillian-JS [10, 61]. Unfortunately, Kudzu
and Cosette is not open sourced. ExpoSE is a dynamic symbolic execution framework, which is not
suitable for our use case. Lastly, JaVerT/Gillian-JS was broken at the start of my thesis [2]. Hence,

we may have to build our own symbolic execution engine from first principles.



Chapter 3

Formalism

TITHEHE. SEAHLE,
The craftsman, who wishes to do bis work well, must first

sharpen his tools.
— L, GRIB- TR
Confucius, The Analects (15.9) [96]

3.1 Overview

In this thesis, we develop a tool and algorithm, named RESTASSURED, that automatically checks
the conformance of a RESTful API server implementation to its OpenAPI specification. At a high
level, the tool accepts two inputs: the server-side code and the OpenAPI specification. It should
tell us whether the server-side code conforms to the OpenAPT specification, and if not, give helpful
information to help the programmer find the non-conformance. The tool works by analyzing the
server-side code using symbolic execution, a powerful program analysis technique that can explore
all possible execution paths of a program.

This chapter formalizes both of inputs and paves the way for the rest of the thesis. We first
formalize the OpenAPI specification and formally define what “specification conformance” means in
this context and how we check for them (section 3.2). Then, we formally define the programming
language our tool targets, which we name RESTSCRIPT and is a subset of JavaScript/TypeScript,
and the library our tool targets, which is Express.JS (section 3.3).

3.2 RESTful API Services and OpenAPI Specification

As the name suggests, RESTASSURED is designed to work with RESTful API services, the
predominant form of web services today. A RESTful API service is a web service that follows the
principles of Representational State Transfer (REST) [36]. Like any other web service, a RESTful
API service is provided by a web backend server that accepts HTTP requests from frontend clients

(also known as consumers) running on heterogeneous platforms, including web browsers or mobile

0x1E
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apps. After processing a request, the server sends back an HTTP response to the corresponding
client, as shown in Figure 1.1. The only difference is that RESTful API services follow a set of
design principles to make better use of the HT'TP protocol, such as using HTTP methods to represent
different operations, using URIs to represent resources, and using status codes to represent the result
of the operation. Requests and responses are usually some JSON object with a defined schema, which

is then parsed by the recipient.

3.2.1 A Formal Definition of OpenAPI Specification

The detail of the OpenAPI specification is discussed in subsection 2.3.5. In short, it is a machine-
readable document that describes the RESTful API service, including the available endpoints, the
HTTP methods they support, the request and response schemas, and the status codes they return.
They can be treated as a formal language describing a set of REST endpoints provided by the REST
API service. For each of the endpoints defined, the server being specified is expected to accept some
HTTP requests (which are inputs to the server) and produce some HTTP responses (which are
outputs from the server). Let us now denote the specification formally, starting from the primitive
types in OpenAPI.

Definition 3.1 OpenAPI Type
An OpenAPI Type T is a type defined in the OpenAPI specification [98]. It can be one of the

six basic types: string, number, integer, boolean, array, or object. It can also be a union
type, such as string | number.

Moreover, the type can be refined with constraints. For example, an integer type can be
further constrained to be a multiple of 10, a string type can be constrained to have a minimum
length of 8 characters and a maximum length of 64 characters, or another string type can be
constrained to be a UUID or a RFC3339-formatted date, or even be matched by a custom regular
expression.

In the case of an object type, the type can be refined with an object schema, or a set of
field names and types for each field. We shall denote the object schema as N — T, a partial
function that maps field names N to their types T

Definition 3.2 Request Schema
A Request Schema R is a tuple R = (Q, H, B), where:

1. @ = N — T is a partial function that maps defined query parameter names N to their
OpenAPI types T.

2. H= N — T is a partial function that maps defined HTTP headers names N to their
OpenAPI types T

3. B =M — T represents the HT TP body content. It is a partial function that map the
MIME media type M (e.g. application/json or text/plain) to their OpenAPI types
T of the body content. These types can either be an object with defined schema, or a
singular primitive type (string, number, or boolean), depending on the MIME type.
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Definition 3.3 Response Schema

A Response Schema P is a tuple P = (C, H, B), where:

1. C is the HTTP response status code of the response (e.g. 200, 404, 500, etc.).

2. H = N — T is a partial function that maps expected HTTP header names N to their
OpenAPI types T

3. B = M — T represents the possible HT'TP body content. It is a partial function that
maps the MIME media type M (e.g. application/json or text/plain) to the OpenAPI
type T of the body content. These types can either be an object with defined schema, or
a singular primitive type (string, number, or boolean), depending on the MIME type.

Definition 3.4 RESTful API Endpoint
A RESTful API Endpoint € is a tuple & = (M, U, H), where:

1. M is the HTTP method (e.g. GET, POST, PUT, DELETE, etc.) of the endpoint.
2. U is the URI path of the endpoint, and may contain path parameters, such as /users/{id}.
3. H = R x P is the endpoint handler. It is a set of functions that maps some request schema

R to a set of possible response schemas P.

Definition 3.5 RESTful API Specification

A RESTful API Specification S = £ is an array of RESTful API endpoints &.

It should be noted that the HT'TP method M and the URI path U together uniquely identify
an endpoint. That is, V&;,& € S, if &1 # &, then My # Ms or Uy # Us.

In addition, a real-world specification also contains some metadata, such as the title,
description, or concrete examples for the request/response schemas, the API version, or the

server URL. These properties are irrelevant to the conformance property and thus omitted.

With Definitions 3.1 through 3.5, we now have a notational system to express what the OpenAPI
specification is able to describe and specify. Given the amount of notations we have used, we list a

table of symbols in Appendix D for easy reference.

3.2.2 An Example of a Real-World OpenAPI Specification, Formalized

We will now illustrate how the formal specification corresponds to concrete HTTP requests (inputs
to the server) and responses (output from the server). For example, consider the API endpoint and
its specification given in the motivating example Listing 1.1. It describes a /login endpoint that
accepts a POST request with a JSON object containing the username and password fields. If the
authentication is successful, the specification states that the server should respond with HTTP code
200 and another JSON object containing the message field and the username field.

Suppose we know a pair of valid credentials username: ys5 and password: my-secret-password.
We can send an HTTP POST request to the /login endpoint with the corresponding JSON object
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containing the credentials, as specified by the specification. The HTTP request is shown in the
plaintext ASCII format! in Listing 3.1, side by side with the OpenAPI specification. Given the valid
credentials, authentication will be successful. Hence, the server will respond with HTTP 200 OK
and another JSON object, as specified in the specification. The actual response is similarly shown in
plaintext in Listing 3.2. Both of the HTTP request and response are valid sentences in the language
defined by the OpenAPI specification, as shown by the highlighted fields in both HTTP packets and
the OpenAPI specification.

Observe that some fields are not specified by the OpenAPI specification in both the request and
response, such as the User-Agent field (which is specified by RFC 7231 [35]) and the X-Powered-By
field (which is a nonstandard common usage). The request even has a field unused-field in the
HTTP body. The fact that these fields are not specified by the OpenAPI specification does not mean
that they must not be present in the actual HT'TP request or response. Instead, it signals that the
server does not make use of these fields when processing the request, and the client should not expect
to handle these fields when parsing the response. In other words, the OpenAPI specification only
describes the fields that are relevant to the server and the client, and the server and client are free
to include additional fields as needed. Hence, a request and response need only to include all the
required fields to be considered conformant to the OpenAPI specification. It may also include some

optional fields in the specification or even additional fields not specified by the specification.

3.2.3 Formal Properties to Check for

We formally specify the properties we check for in the server implementation in Definition 3.7.
These properties are the basis for the verification algorithm we develop in the rest of this thesis. In

preparation for the properties, we need to first formalize the notations for the server implementation.

Definition 3.6 Server Implementation

A server implementation S’ = £’ is an implementation of the RESTful API specification
S = £. Here, the prime symbol S’ indicates the implementation relation to the specification S.
Similarly, the prime symbol £’ indicates that each endpoint implementation &' = (M, U, H’)
implements the endpoint £ = (M, U, H).

All implementations are of the same type as their corresponding specifications, except for the
handler function implementation H' = R’ — P’, which implements some specified handler
H=RxTP.

Definition 3.7 Verification Properties

RESTASSURED verifies RESTful API specification conformance in the server implementation.

LAn HTTP packet, like any other network packet, is a binary data structure of some encoded information. However,
it is often more human-readable, as the information is directly represented with ASCII encoding.

They are composed of a formatted header and a body, which can contain anything from a plain string to JSON
objects to binary files, which are parsed according to the Content-Type header field. An HTTP request always begins
with METHOD PATH, followed by some HTTP headers in the form of KEY: VALUE, a blank line, and the body content.
Similarly, an HTTP response always begins with HTTP-VERSION STATUS-CODE, followed by some HTTP headers in the
form of KEY: VALUE, a blank line, and the body content. For more details, see RFC 7231 [35].
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POST /login HTTP/1.1 1 /login:
Host: localhost:3000 2 post:

; User-Agent: curl/8.7.1 3 summary: Login to the application.
accept: application/json 1 requestBody:
Content-Type: application/json 5 required: true

; Content-Length: 116 6 content:

7 application/json:

{ 8 schema:
"username" : "ysb", 9 type: object
"password": "my-secret-password", 10 properties:
"unused-field": "this field is not 11 username :
< specified or used" 12 type: string

} 13 password :

14 type: string
15 /* */

N

IS

Listing 3.1: An example of a RESTful HTTP request to the login endpoint defined in Listing 1.1. The HTTP
packet is shown in plaintext format on the left, and the relevant fragment of the OpenAPI specification is
shown on the right. The corresponding fields in both the HTTP packet and the specification are highlighted

to show how the specification describes the actual request.

HTTP/1.1 200 OK L/x %/
X-Powered-By: Express 2 responses:
5 Content-Type: application/json; charset= 3 200:
— utf-8 1 description: Login successful.
Content-Length: 47 5 content:
5 ETag: W/"2f-+U9igXk4nkx4svjBD957HNUsGz0" 6 application/json:
; Date: Fri, 05 Apr 2024 02:22:32 GMT 7 schema:
Connection: keep-alive 8 type: object
Keep-Alive: timeout=5 9 properties:
10 message :
{"message" : "Login successful", 11 type: string
< "username" : "ys5"} 12 description: A success message.
13 username :
14 type: string
15 description: Username.
. STV

Listing 3.2: An example of a RESTful HTTP response from the login endpoint defined in Listing 1.1.
The HTTP packet is shown in plaintext format on the left, and the relevant fragment of the OpenAPI
specification is shown on the right. The corresponding fields in both the HTTP packet and the specification
are highlighted to show how the specification describes the actual response.
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More specifically, it guarantees that the following properties are satisfied given a RESTful API

specification S = £ and a server implementation S’ = £'.

1. Soundness of API Endpoints in Specification: For each endpoint defined in the
OpenAPI specification (which can be uniquely identified by the HTTP method and URI),
there must exist some corresponding endpoint implementation with the same HTTP
method and URI in the server code.

VE=(M,UMH) €S |3 =MUMN)eS

2. Well-definedness of Handler Functions: For each endpoint £ = (M, U, H) defined in
the OpenAPI specification, the corresponding handler function implementation H' = R —
P(P) must implement the specified handler # = R x P. That is, the handler function must
be well-defined for all possible request schemas R defined in the OpenAPI specification.

In other words, for all possible request schemas R received, the handler function must not
throw an error or crash and must produce some set of response schemas P’. In addition,
for each possible branch of execution in the handler function implementation, the response
schema produced p’ € P’ must be a valid response schema P defined in the OpenAPI
specification.

VH=RxPandH =R — P |VYre RH (r)C P

A violation of these properties indicates a non-conformance of the server implementation to

the OpenAPI specification.

Moreover, we also check for the following properties, which do not signal a violation of the
conformance property. However, they may be indicators of a poorly written specification or a

poorly implemented server, and give warnings to the user if they are found.

3. Completeness of API Endpoints in Specification: For each endpoint implemented
in the server code, there must exist some corresponding endpoint in the OpenAPI
specification. Otherwise, the programmer may have forgotten to write specification for
the endpoint, or is hiding the endpoint from specification for “security through obscurity”,
a bad practice.

VE' = (M,UH)eS |3 =(MUH) €S

4. Completeness of Response Schemas in Specification: For each possible fields in
an actual response P’ produced by the server, it should be defined in the OpenAPI
specification response schema P. Otherwise, the server may return extra fields, which
may leak extra information; or the server may expect the client to handle some fields that

are not present in the specification, which is a bad practice.

VH=RxPandH =R — P |Vre RH'(r) 2 P
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3.3 Our Target Language and Library

Since we assume that we have access to the source code, we plan to conduct symbolic execution
on the source code itself, rather than conducting a binary analysis with the compiled binary (using
tools like KLEE [11]) This technique is called whitebox analysis, which, like most program analysis
techniques, is language specific. Therefore, we need to choose a specific language to target.

In this thesis, we focus on the TypeScript language, a statically typed superset of JavaScript that
compiles to plain JavaScript and is widely used in web development. Moreover, we are specifically
targeting the popular Express.JS library, a minimal and flexible Node.JS web application framework
that allow programmers to build web applications on [30].

However, it should be noted that RESTful API servers can be written in any language and with
any library. The OpenAPI specification is designed in a way that is language-agnostic, and the
server implementation can be written in any language that supports HTTP. Some popular choices
for backend web service development other than TypeScript/JavaScript with Express.js include
Python with Flask, Ruby with Ruby on Rails, PHP with Laravel, Java with Spring, and Golang
with Gin. In more recent years, serverless architectures have also gained popularity in RESTful API
services, where an API gateway route requests to serverless functions that are executed on demand.
Some function-as-a-service platforms include AWS Lambda, Google Cloud Functions, and Azure
Functions. They allow developers to write serverless functions (handlers) in a variety of languages.
However, we will not consider these platforms in this thesis, as they differ from traditional web server
environments and are more heterogeneous in nature, thus requiring a different approach to analyze.

We have chosen TypeScript/JavaScript as our target language(s), primarily because of its
popularity in web development and in general. As of Apr 2024, the TIOBE index [103] ranks
JavaScript as the 6th most popular programming language, behind Python, C, C++, Java, and C#.
Moreover, the PYPL PopularitY of Programming Language Index, which is based on the frequency
of searches for tutorials on Google [13], ranks JavaScript as the 3rd most popular programming
language, behind only Python and Java. Therefore, we believe that a beginner in web application
development is more likely to choose JavaScript as their language of choice to develop a RESTful web
service. They are also more prone to make mistakes in their code, and thus more likely to benefit
from a tool that can automatically check for conformance to the written OpenAPI specification.
Therefore, we believe that targeting JavaScript is a good choice for RESTASSURED. In addition,
TypeScript is a statically typed superset of JavaScript that compiles to plain JavaScript, and it makes
it easier to reason about the code and to perform static analysis. In other words, if RESTASSURED
supports (non-strict) TypeScript, it by extension also supports JavaScript?.

Similarly, we have chosen Express.JS [30] to be the target library for its popularity. According to
NPM, the official package manager for Node.js, Express.JS is among the most downloaded packages,

with over 20 million average weekly downloads and 24 million weekly downloads at the time of

2TypeScript has a strict mode, where it enforces stricter type checking rules than JavaScript, e.g. it disallows the
type blackhole any.

TypeScript in strict mode is not a superset of JavaScript, and the TypeScript compiler will reject some JavaScript
code that is otherwise valid. Here, when we talk about TypeScript, we refer to TypeScript in non-strict mode, where
it is a strict superset of JavaScript. Therefore, if RESTASSURED supports (non-strict) TypeScript, it will also support
JavaScript.
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writing [31]. Moreover, there are 78 thousand open source packages published on NPM that depend
on Express.JS, which indicates that it is widely used in the Node.js ecosystem [30]. In comparison,
React, the most popular frontend library for building user interfaces, also has around 20 million
average weekly downloads and 138 thousand dependent packages [32]. It should note that weekly
download counts and dependent counts are only rough indicators of popularity, and there exist many
confounding variables such as CI/CD adoption rate (which automatically downloads dependencies
to test them) and the culture of the community (backend software projects are less likely to be
open source than frontend software projects). However, we think these are strong indicators of the
popularity of Express.JS in the Node.js ecosystem and justify our choices in targeting it for our

analysis.

3.3.1 RestScript: A Restricted Subset of JavaScript

Both JavaScript and TypeScript are large languages with complicated and quirky semantics. Due
to the limited timespan of this thesis, we need to prioritize the most important semantics first.
Thus, we shall restrict our language to a meaningful subset of JavaScript/TypeScript. We name
this language RESTSCRIPT.

We build RESTSCRIPT upon a past work in PLDI ’15 [76], which derived formal syntax and
semantics for a near-complete subset of ECMAScript 5.1 (also known as ES5) [28], the standard for
JavaScript proposed in 2011. However, it is worth noting that the modern day JavaScript has evolved
significantly since the release of the ES5 standard. Some of the most prominent changes include the
let and const keywords for variable declarations, the concept of modules, import/export statements,
and asynchronous programming with promises introduced in the ECMAScript 6 standard (ES6, also
known as ECMAScript 2015, or ES2015); the async and await keywords for easier asynchronous
programming introduced in ES8/ES2017; Promise.prototype.finally in ES9/ES2018; the nullish
coalescing operator 7?7 and the optional chaining operator ?. (which were both originally proposed
and widely used in TypeScript) and BigInt type for arbitrary precision integers in ES11/ES2020.
We will selectively support some of these features in our restricted JavaScript language, for their
wide usage and importance in modern web development.

At a high level, RESTSCRIPT supports the most important features of the JavaScript/TypeScript
language, such as variable declarations, function declarations, expressions, control flow statements
(if/else, for/while loops, and function calls), and literals. We specifically support some of the features
used widely in web service programming, such as arrow functions, object literals, array literals, and
object property/array element access expressions. For simplicity, we assume that all variables are
declared before use, and we do not support hoisting, a JavaScript feature that allows variables to be
used before they are declared. Moreover, we do not fully support the dynamic re-binding of this’s
scope in JavaScript.

There are also a few things we do not support (for now) in our restricted JavaScript language.
They include:

e Exception throwing and catching, since they are very engineering-heavy. However, they are

important in web services, since uncaught exceptions will automatically result in HTTP 500
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responses. They are in principle possible to support, with Java-like annotations on possible

exceptions.

import/export and ES modules (we only support require for now), for its engineering
complexity. However, they are widely used in modern web services code. They are in principle

possible to support with a slightly more complicated runtime environment.

Asynchronous code (promises, async/await), since they are not widely used in the beginner’s

code and are a lot more difficult to reason about.

Node.js and browser standard libraries, such as console, fs, sys, fetch, and XMLHttpRequest;

since they are complicated and often have side effects.
Dynamic code execution like eval, since it is rarely used in practice.

classes, since they are not widely used in JavaScript.

Formal Syntax of the Restricted JavaScript/TypeScript Language

For brevity, we will only present some of the most important and interesting syntactic features of the

language. The full formal syntax for the restricted JavaScript language is presented in Appendix B.

SourceFile ::= Statements

Statements ::= Statement
| Statement ";" Statements
| /* ... %/

Statement Block
VariableStatement

|

| FunctionDeclaration
| ExpressionsStatement
| IfStatement
|

|

|

|

WhileStatement
ForStatement
ReturnStatement
VA T V4
Block ::= "{" Statements "}"
VariableStatement ::= "var" VariableDeclarations
| "let" VariableDeclarations
| "const" VariableDeclarations
VariableDeclarations ::= VariableDeclaration
| VariableDeclaration "," VariableDeclarations
VariableDeclaration = Name
| Name "=" Expression
| /% ... %/
27 FunctionDeclaration ::= "function" Identifier "(" ParameterList ")" Block
Parameters ::= "(" ParameterList ")"
ParameterList = Identifier "," ParameterList
| Identifier
| /% ... %/
33 ExpressionsStatement ::= Expression
Expression := BinaryExpression
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| UnaryExpression

| ParenthesizedExpression

| Literal

| Identifier

| ArrowFunction

| CallExpression

| NewExpression

| PropertyAccessExpression

| ArrayElementAccessExpression

5 /* All common expressions (arithmetic, bitwise, comparison) are omitted for brevity */

= llnull n

| lltrue n

| "false"

| "thiS ]

| NumericLiteral
| StringLiteral
| ObjectLiteral
| ArrayLiteral

/* All common literals (numbers, strings) are omitted for brevity */

ObjectlLiteral ::= "{" PropertyNameAndValueList "}"
PropertyNameAndValueList ::= PropertyNameAndValue

| PropertyNameAndValue "," PropertyNameAndValuelList
PropertyNameAndValue ::= Identifier ":" Expression
ArrayLiteral ::= "[" ElementList "]"
ElementList ::= Expression

| Expression "," ElementList

Identifier ::= regex("[a-zA-Z_][a-zA-Z0-9_]*") // cannot start with a number
ArrowFunction ::= Parameters "=>" Expression
CallExpression ::= Expression "(" ArgumentList ")"
ArgumentList ::= Expression[","]
PropertyAccessExpression ::= Expression "." Identifier
ArrayElementAccessExpression ::= Expression "[" Expression "]"
IfStatement ::= "if" "(" Expression ")" Block

| "if" "(" Expression ")" Block "else" Block

WhileStatement ::= "while" "(" Expression ")" Block
; ForStatement ::= "for" "(" Expression ";" Expression ";" Expression ")" Block
| "for" "(" VariableDeclaration ";" Expression ";" Expression ")" Block

| "for" "(" Expression "in" Expression ")" Block
| "for" "(" VariableDeclaration "in" Expression ")" Block

/* ... *x/

0x27

Listing 3.3: A formal definition of the RESTSCRIPT language using BNF. This is a simplified version of the

full formal syntax, which is presented in Appendix B.
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3.3.2 Targeting A Subset of the Express.JS Library

Express.JS [30] is a popular web application framework for Node.js that we target in this work.
Because it is an external library and extremely complicated (currently 538k line of JavaScript code
according to GitHub API of the repository [30]), the analysis of Express.JS server code is non-
trivial. Instead, like other symbolic execution-based testing tools, we build an internal model of the
server code to reason about the server’s behavior. Since our tool primarily targets developers of
RESTful API services instead of the maintainers of Express.JS, we do not aim to model the entire
Express.JS library but only a meaningful subset of its features that are commonly used in practice.
In Listing 3.4, we show an example Express.JS server that demonstrates some of the features that

we model.

The Syntax of Express.JS

As shown in Listing 3.4, the programmer is to first require the Express.JS library by calling the
require() function, which returns the module object that contains the Express.JS library. Then,
an Express.JS server is created by calling the default module export express() function, which
returns an instance of the Express application app. The server is configured by calling methods on
the app object, which modifies the internal state of the server. Some common methods include:
o app.use(handler, ..): defines a middleware (a series of handler callback functions) that will
be executed for every request, regardless of the path or HT'TP method.
e app.set(key, value): defines a setting that affects the behavior of the server, such as the
environment mode (“development” or “production”) or routing behaviors.
e app.get(key): retrieves the value of a setting that was previously set with app.set(). Note
that there exists two get method with entirely different meanings.
e app.get(path, handler, ..): defines a route that will invoke the series of handler callback
functions when a GET request to the given path is received.
e app.post(path, handler, ..): defines a route that invoke the series of handler callback
functions when a POST request to the given path is received.
e app.all(path, handler, ..): defines a route that invoke the series of handler callback
functions when a request to the given path is received, regardless of the HT'TP method.
e app.route(path): creates a route that can be used to define handlers for a given HTTP
method. For example, app.route("/hello").get(handlerl) .post (handler2).
e app.listen(port, callback, ..): starts the server listening for incoming requests on the
given port, and calls the callback functions when the server is ready.
When the handler functions are called, they are passed three arguments in order:
e req: the request object, which contains information about the incoming request, such as the
request path, query parameters, headers, and body.
e res: the response object, which contains methods to send the response back to the client, such
as res.send() and res.status().
e next: a function that, when called, passes control to the next handler in the current path, or

the next matching route.
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const express = require("express");
const app = express();

// a built-in middleware that is called for every request

; // parses incoming requests with JSON payloads into a JS object req.body

app.use(express.json());

// a user-defined middleware that is called for every request
app.use((req, res, next) => {

console.log("LOGGED") ;

next(); // pass control to the next handler
B

app.get("/hello/:name", (req, res, next) => {
res.send( Hello, Param ${req.params.name}!”);
// next(); // if this line is uncommented, the /hello handler will
// also be executed and result in error ERR_HTTP_HEADERS_SENT

b;

app.get("/hello", (req, res) => {
res.send("Hello, World!");

s 1)

5 // A regex route that matches /hello followed by any string and /[name]
s app.post(/~\/hello(.*¥)\/(.*)/, (req, res) => {

res.send( Hello, RegEx ${req.params[1]}!7);
b

if (process.env.NODE_ENV === "development") {
// default fallback route that returns 500 for all other paths in development
app.use((req, res) => {
res.status(500) .send("Problem!");
b;

5 } else {

// another way to write a default fallback route that returns 404 for all
app.all("x", function (req, res) {
res.status(404) .send("Page not found");
b
}

app.listen(3000, () => {
console.log("Server started on port 3000");

1ON

Listing 3.4: An example Express.JS server program that uses various features in Express.JS: built-in and
user-defined middlewares, routes with path parameters and regular expressions, default fallback routes, and
routes that are defined based on startup conditions (in this case, an environment variable).
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The Behavior of Express.JS Servers

In a typical Express.JS application, the server code is organized into a set of routes (equivalent to
RESTful API endpoints), each of which is a combination of a path and an HTTP method. For
each route, Express.JS accepts one or multiple callback handler functions that are called when the
route is matched. Moreover, the route path in Express.JS can contain regular expressions, which
makes it possible for one route to match multiple different paths, or for a default fallback route to
be defined when no other route matches. There also exist catch-all routes (known as “middlewares”
in Express.JS terms) that are always executed regardless of the path or HTTP method. These
middlewares can be used for tasks such as logging, authentication, or error handling. For example,
the code in Listing 3.4 shows a simple Express.JS server that makes use of all these features.
When a request is received by an Express.JS server, the server will go through all the routes in
the order they are defined in the code, and skip to the next route if the current route does not match
the request’s path or method. If a route matches the request, the server will execute the handler
functions associated with that route. If a handler function does not call the next () function, (like
L17 in Listing 3.4), the server will stop executing the handlers and send the response back to the
client. On the other hand, when a handler calls next() (like L12 in Listing 3.4), the server will

continue to the next handler in the current path, or the handler for the next matching route.



Chapter 4

Algorithms

Let us change our traditional attitude to the construction of programs: Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to human beings what we want a computer to do.

— Donald Knuth, in “Literate Programming” [51, p. 97]

4.1 Overview

RESTASSURED’s approach to verifing the server-side RESTful API code for conformance can be
roughly divided into two parts. It first analyzes the server-side code to build an internal model of
the API service, its endpoints and their handlers. Sometimes, the server may have multiple states,
depending on some environment variable or startup conditions (e.g. connection to a database, or a
different mode of operation), thus resulting in different endpoints or handlers. Hence, RESTASSURED
will execute the server code across all possible execution paths and possibly end up with multiple
models of the server (section 4.3). Then, for each of the endpoints defined in each model of server,
RESTASSURED generates symbolic requests based on the OpenAPI specification (query parameters,
HTTP headers, and body contents), and symbolically executes the handlers to derive a set of
possible symbolic responses, walking through all possible execution paths. For each possible symbolic
response, it uses a constraint solver to check for specification violations. If any are found, it generates
concrete input values corresponding to counterexamples that help programmers replicate and debug
non-conformant responses (section 4.4). A high-level summary of RESTASSURED’s core algorithm

can be seen in Figure 4.1.

We begin by describing our symbolic execution engine that handles RESTSCRIPT, a restricted
subset of TypeScript/JavaScript we defined in subsection 3.3.1, and the Express.JS library. We first
detail the symbolic execution techniques employed in building a symbolic execution engine for the
restricted language from first principles and discuss the many design choices we made throughout

the process (section 4.2).

0x2B
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Figure 4.1: The high-level summarization of RESTASSURED’s workflow. RESTASSURED verifies the
conformance of a server-side RESTful API implementation to a OpenAPI specification.

The tool first takes in the source code of the Express.JS application to build an internal model of
the application, its routing logic and handler functions. Then, it uses the OpenAPI specification to
generate symbolic requests for each of the defined endpoints. These symbolic requests are then sent
to the symbolic execution engine, which simulates the routing logic of the Express.JS application,
and executes the handler functions of the defined routes. The engine produces a set of possible
symbolic responses for each of the requests. These responses are then checked using the SE engine
and Z3 against the specification for violations. If violation is found, RESTASSURED synthesizes a
counterexample and reports it to the user.
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4.2 Symbolic Execution for RestScript

Due to the lack of off-the-shelf static symbolic execution engines that can handle JavaScript/Type-
Script or code, we built our own symbolic execution engine for a restricted subset of the language,
which we define in subsection 3.3.1 and call RESTSCRIPT.

An Example Program

Let us begin by drawing an example program that we will use to illustrate the symbolic execution
engine. The program is intentionally complicated, using conditionals, anonymous inline arrow
function declarations, variable shadowing, and function evaluations to demonstrate some features of

the symbolic execution engine.

function add(a, b, c) {

if (a < 0) {
return O;

} else if (b < 0) {
return O;

}

let adder = (x, y) => {
return x + y;

};

if (¢ ==0) {
let adder = (x, y) => {
return x - y;
};
} else {
adder = (x, y) => {
return x * y;
};
}

const val = adder(a, b);
return val;

}

Listing 4.1: An example RESTSCRIPT program to illustrate the symbolic execution engine. This program is
intentionally overcomplicated to demonstrate some features of the RESTSCRIPT symbolic execution engine.
The function takes in three numeric parameters a, b, and c, which the engine models as symbolic values
that can take on any integer value. At the end of execution, the engine will produce four different states,
each representing a different path of execution.

The function takes in three numeric parameters a, b, and ¢, which may be any numerical values.
The engine does not know the concrete values of these parameters, and hence models them as
symbolic values, which can take on any integer value. Then, when the function is executed,
the engine will go on to execute all statements and evaluate all expressions in the function body,
recording their side effects and updating the symbolic states accordingly, which represent the
internal state of the program running at each instance.

For example, the variable adder is declared at L8-1.10 and assigned an arrow function that adds

two numbers. A slightly more complicated example happens at L2, where an if-else statement is
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used to return 0 if a is less than 0. Since the engine does not know the concrete value of a, it will
consider all possible cases, and create two different states: one where a is less than 0 and one where
a is greater than or equal to 0. For the first state, the engine will add a < 0 to the path constraint,
enter the block in the true branch, which returns 0, and ends the execution of the function. Here,
path constraint is a logical formula that represents the conditions that must be satisfied for the
current path to be taken. Hence, the path constraint tells us what values drive the program down
into the path. The engine similarly creates another state for the false branch, adding —(a < 0) to
the path constraint, and continues on to execute the next statement, which is the else-if statement
at L4.

The symbolic execution engine is aware of the scope of the variables and need to handle variable
shadowing, i.e. the re-declaration of a variable with the same name in an inner scope, correctly.
For example, the variable adder is declared twice, once in the outer function scope (L8-L10) and
once in the inner block scope (L13-L15). When the variable is declared in the inner block scope,
it shadows the variable declared in the outer function scope. As a result, the value assigned to the
variable adder in the inner block scope should not affect the value of the variable adder in the outer
function scope. However, at L17-1.19, the variable adder is reassigned. This adder variable refers
to the same variable declared in the outer function scope (L8-L10), and the engine should update
the value of the variable adder in the outer function scope to the new value.

At the end of execution, the engine will produce four different states, each representing a different

path of execution:

1. The path where a is less than 0, and the function returns 0.
2. The path where a is greater than or equal to 0, b is less than 0, and the function returns 0.

3. The path where a is greater than or equal to 0, b is greater than or equal to 0, ¢ is 0. The

function returns the sum of a and b, the result of evaluating the arrow function at L8-L10.

4. The path where a is greater than or equal to 0, b is greater than or equal to 0, ¢ is not 0. The

function returns the product of a and b, the result of evaluating arrow function at L17-L19.

In the following subsections, we will discuss the inner workings of this symbolic execution engine,
including how it models the symbolic environment, evaluates expressions, handles branching and
multiple paths in the program, and simulates control flow indirections in the program. It is
important to note that the symbolic execution engine is not faithful to the JavaScript language
specification [29] but makes reasonable approximations given real-world usage patterns to make the
symbolic execution more tractable. This is because the JavaScript language is extremely complex,
and faithfully modeling the entire language would be time-consuming, given the time constraints
of this project. These simplifications are also detailed in the following subsections. They are also
potential sources of unsoundness in the symbolic execution engine, which we acknowledge and discuss

the rationale behind them in section 7.2.
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4.2.1 Symbolic Environment and Activation Records

In a symbolic execution engine, all states of a program execution is stored in a symbolic environment,
or sometimes known as symbolic states. In our symbolic execution engine, we include the following

information in the symbolic state:

e The current path constraint, which is a logical formula that represents the conditions that

must be satisfied for the current path to be taken.

o The symbolic store, which is a mapping from all variables (primitives, objects, arrays) to their

respective values (symbolic or concrete), and from named functions to their declarations.

e The stack of activation records, which represents the current execution context of the program,
including the next statement to be executed, the current function being executed, the statement

to return to, and some of the scope information for enclosures.

o Internal properties of the symbolic execution engine, such as bookkeeping information for the

control flow, cached results, and sibling states (for multipath execution).

The Path Constraints

A path constraint is a logical formula that represents the conditions that must be satisfied for the
current path to be taken. It is a conjunction of many logical clauses, with each clause representing
a single condition.

For example, for the execution of Listing 4.1 to reach L13, it must take the false branch at L2,
the false branch at L4, and the true branch at L12. Hence, the path constraint for the current state
would be the conjunction of these three clauses:

o —(a < 0), since the program takes the false branch at L2.

o (b < 0), since the program takes the false branch at L4.

e ¢ =0, since the program takes the true branch at L12.

Therefore, the conjuncted logical formula would be:
“(a<0)A-(b<0)A(c=0)

The path constraint tells us what values drive the program down into the path. Since the path
constraint can be expressed as a logical formula, we can use a Satisfiability Modulo Theories (SMT)
solver, such as Z3 [24], to solve it. If we were to solve for the path constraint, we would get the set
of values for a, b, and c that would lead the program to this path. In this case, the set of values
would be a > 0Ab > 0Ac = 0. Since Z3 tells us that the path constraint is satisfiable, we know that
there exists some value for a, b, and c that would lead the program down this path. In other words,
this path is reachable. This is an important property, because some paths may be unreachable in
real-world codebases, and we want to avoid spending time analyzing them and the outputs they
produce.

In our design, we adopt a lazy evaluation strategy for the path constraints, meaning that

we merely store the path constraints during execution, and only check for satisfiability after the
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execution finishes. This is opposed to the eager evaluation strategy, where the path constraints
are checked for satisfiability at every branching point, so unreachable paths can be pruned early.
Although the lazy strategy may lead to more paths being explored, it reduces the number of calls

to the SMT solver and is reported to be “more efficient than their eager counterparts” [1].

The Symbolic Store

The symbolic store is a symbol table that contains all the variables and identifiers in the program
and their respective values (symbolic or concrete). In our symbolic execution engine, we use a map
to represent the symbolic store, where the keys are the variable names and the values are special
Value objects for the symbolic execution. A Value is represented as a tuple of its type and an
expression. For concrete values that are produced by literals, the expression is the concrete value
itself, such as a number, a string, or a boolean in JavaScript. For symbolic values, the expression is
an SMT-LIB expression [6] that represents the value. For objects, the expression would be another
map of all fields and their respective values.

Like most other programming language, scope is important in JavaScript. Moreover, the scoping
rules of JavaScript are perhaps among the most complicated, with many quirks and exceptions. It
is built on the concept of lexical scoping, where the scope of a variable is determined by its position
in the source code. To quote the language standard, “usually an Environment Record is associated
with some specific syntactic structure of ECMAScript code such as a FunctionDeclaration, a
BlockStatement, or a Catch clause of a TryStatement. Each time such code is evaluated, a new
Environment Record is created to record the identifier bindings that are created by that code.” [29,
§9.1]. However, not all identifiers are associated to the immediate environment record. For example,
variables declared by a var statement are usually scoped at the function level and hoisted to the
creation of the environment record [29, §14.3.2], whereas variables declared by let and const are
scoped at the block level and only created during the execution of that statement [29, §14.3.1]. To
make things more convoluted, the keyword this is scoped at the non-arrow-function function level,
and can also be re-binded to other environment records at runtime [29, §9.1.1.3].

In our symbolic store, we simplify the scoping rules to dynamic scoping, where the scope of a
variable is determined by the current execution context at runtime. The dynamic scoping rules are
semantically similar to the lexical scoping rules if no variable shadowing or capturing is present,
and is easier to implement. In our symbolic execution engine, we use a single stack of execution
contexts (the rough equivalent of environment records under dynamic scoping) to represent the
scope of the variables. Each execution context represents a level of scoping, and contains a map
of the variables and their values. The TypeScript definition of the execution context is shown in
Listing 4.2, where we use an array to simulate the stack.

At the start of the program, the stack of execution contexts contains only the base execution
context, which contains the built-in functions and variables in JavaScript, such as console and
require. When a new scope (e.g. a block or a function) is entered, a new execution context is
pushed onto the stack. When a scope is exited, the execution context is popped from the stack.

The type of scope is determined by the prefix of the scope name, which is a string that is used
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type ExecutionContext = {

symbolTable: Map<string, Value>;

scopeName: string; // the prefix determines the type of scope (function, block, etc.)
};

type ExecutionStack = ExecutionContext[];

Listing 4.2: A simplified TypeScript definition of the execution context. The execution context contains a
map of the variables and their values, and a scope name that determines the type of scope (function, block,
etc.). A function-typed scope contains special symbols and also serves as an activation record.

to differentiate the different types of scopes (e.g. function, block, etc.). At the function scope, in
addition to the variables declared in the function, the symbol table also stores special symbols to
denote special control flow directives and this. When looking up a variable in the symbolic store,
we start from the top of the stack (the current execution context) and search downwards. This
way, we implement the dynamic scoping rules, where the current execution context takes precedence
over the outer execution contexts. When declaring variables, we add the variable to the nearest
appropriate execution context in the stack. For example, let and const are block-scoped, var is
function-scoped. For var, we add the variable to the function-level execution context when the
statement is encountered and choose not to hoist its declaration, for modern JavaScript/TypeScript
code usually does not use var anymore, not to mention that relying on the hoisted declaration of var
is a bad practice (for only the declaration and not the initialization is hoisted, and the variable will
be left declared but uninitialized). Same goes for function declarations. For simplicity, we do not
support the dynamic scoping of this. For this, we bind the this keyword to the current non-arrow

function’s this value, and we do not handle the dynamic binding of this at runtime.

Activation Records

Lastly, the activation record is a stack of records that represents the current execution context
of the program [29, §9.4]. It should contain “whatever implementation specific state is necessary to
track the execution progress of its associated code” [29, §9.4].

In our design, due to the dynamic scoping rules, we can represent both the activation record
and the environment record with the same data structure, which we call the execution context and
detailed above. Hence, an activation record becomes a special execution context with “function”-
typed scope name. It contains special symbols for the current function being executed, the next
statement to be executed, the statement to return to, and offers easier access to the current function
scope. The activation record helps us to keep track of changes in the control flow, such as a function
call, a function return, or a break or continue statement in a loop.

Whenever a function is called, a new activation record is pushed onto the execution stack. The
new activation record contains the function to be executed, the next statement to be executed
(usually the first statement of the function), and the statement to return to (usually the statement
that evaluates the function call expression). When we encounter a return statement in the function
block, we would skip the execution of the rest of statements, save the value to be returned as a

special symbol in the symbolic store, and pop the activation record from the stack. Then, we would
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continue the execution from the statement to return to and replace the function call expression with

the return value.

4.2.2 Expression Evaluation and Symbolic Values

RESTSCRIPT nodes can be separated into two categories: statements and expressions. Statements
are executed to perform certain actions with side effects, such as variable declarations, function
declarations, or change the control flow in the cases of if-else statements and loops. On the other
hand, Expressions—such as an arithmetic expression, a function call, or a variable reference—are
evaluated to produce some values. Naturally, during a statement execution, we update the symbolic
store and the path constraint to reflect the changes in the program state. A statement may contain
expressions, which we evaluate to produce a Value object. A Value object is a tuple of its type and
an expression, and is used by the symbolic execution engine to represent both concrete and symbolic

values.

For simple expressions like arithmetic expressions on concrete values, we evaluate them using
the built-in JavaScript arithmetic operators. For example, consider the following expression in the
RESTSCRIPT Abstract Syntax Tree (AST), which is a subset of the TypeScript AST:

BinaryExpression(NumericLiteral(l), PlusToken, NumericLiteral(2))
It can be evaluated concretely using the JavaScript code (1 + 2) to produce the concrete value
Value (Number, 3).

This value is then returned as the result of the expression evaluation.

However, if any operand is a symbolic value, the resulting value need to also be symbolic.
We evaluate them by constructing an SMT-LIB expression that represents the operation and the
operands. These SMT expressions will eventually be solved by Z3 [24], our SMT solver, to search all
possible values that satisfy the path constraint. For example, let us change the numeric literal 1 in
the previous symbolic expression to be a symbolic value with expression 3 - z. Recall that symbolic
expressions are represented as SMT-LIB expressions. Hence, (* 3 x) represents the product of 3
and a symbol x, which can take on any integer value, assuming the path constraint already contains

the symbol declaration (declare-const x Int). Then, the expression becomes:
BinaryExpression(SymbolicValue<Number>("(* 3 x)"), PlusToken, NumericLiteral(2))
This expression would instead be evaluated to the following symbolic value:
SymbolicValue<Number>("(+ (* 3 x) 2)")
Here, SymbolicValue<T>(expr) is a syntactic sugar that expands to:

Value(Symbol, { type: T, expr: expr 1}).
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Sometimes, expression evaluation may involve branching. For example, if an expression divides
by a symbolic value, the symbolic execution engine has to consider both the case where the divisor
is zero and the case where it is not zero. Similarly, if the expression is a CallExpression that calls
a function with multiple possible return values, the symbolic execution engine has to consider all
possible return values. In these cases, the symbolic execution engine clones the current state with

different path constraints and evaluates the expression separately in each state.

Modeling Object Typed Values

Other than primitive values, we also handle values of the Object types, such as objects and arrays
in JavaScript, and function values. For object values, we store each field and its value as a key-value

pair in the symbol. For example, the object {a: 1, b: 2} would be stored as the following;:
Value(Object, {a: Value(Number, 1), b: Value(Number, 2)})

Concrete array values are modeled similarly to object values, except we map each index as a key

to its value. For example, the array ['a', 'b'] would be stored as the following:
Value (Array, {0: Value(String, 'a'), 1: Value(String, 'b')})

Symbolic array values are very complicated to fully model, because we need to handle some symbolic
array length and have symbolic values for each of the elements, not knowing the exact number of
elements in the array. In our symbolic execution engine, we simplify them to a list of the same values,

with a symbolic length. As a result, we can model an array of numbers as:
SymbolicValue<Array>({value: SymbolicValue("x"), length: SymbolicValue("n")})
with the following path constraints:
(declare-const x Real), (declare-const n Int), (assert (>= n 0))

where x is a symbolic value representing the value of the array elements, which is assumed to be the
same across all elements, and n is a symbolic value representing the length of the array. We are able
to make this simplification because the REST specification is not granular enough to make specific
assumptions about the contents of each array element. Instead, it only requires the array to be a list

of values of some refined types.

Lastly, function values are stored as a reference to the function body in the AST. When a function
is called, the engine creates a new activation record for the function, and goes to the first statement

of the function body.

4.2.3 Multipath Execution

Another problem we encounter in the example Listing 4.1 is the presence of branching, which creates
multiple paths in the program execution, depending on the boolean value that some conditions
evaluate to. In the example, the program has three branching points: the if-else statement at L2,

the if-else statement at L4, and the if-else statement at L12. If the input values of a, b, and c are
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concrete, we can determine which path the program will take. For example, if a = —1, b = 1, and
¢ = 0, the program will take the first path, and directly return 0.

However, since we do not know the concrete values of the inputs, we model them as symbolic
values, which can take on any numerical values. As a result, we do not know what the conditions
a<0,b<0,and ¢ = 0 evaluate to, and hence do not know which path the program will take.
As a result, we have to consider all possible paths and execute them separately. When we enter
a branching statement, we effectively branch out into states, one for each possible branch, which
we call sibling states. The conditions that will hold true for each state are added to the path
constraint of the state. Then, we continue on to execute the next statement in each state. This
technique is called Multipath Execution in the symbolic execution literature [15].

In general, branching could happen during the execution of an if-else statement, a switch-case
statement, or a loop. RESTSCRIPT does not explicitly support the switch-case statement, but it can
be trivially rewritten as a series of if-else statements. Loops are usually more complicated, especially
when the loop counter variable is symbolic, and is a major challenge in symbolic execution [1]. As
a result, we only support bounded loops, which can be effectively rewritten as a forEach statement

on some array.

Choices

For if-else statements, we model branching by maintaining a set of sibling states. When a branch
is encountered, we first determine if the condition of the branch can be evaluated to a concrete
value. If it can, we evaluate the condition and take the appropriate branch. If it cannot, we are
left with a symbolic value representing the result of the condition. Depending on the truth value
of the condition, the program will take one of the two branches. Hence, we clone the current state
to create a sibling state for the false branch, and treat the current state as taking the true branch.
If an else block exists, we mark it as the next statement to be executed for the cloned state. If
there is no else block, we mark the statement after the if-else statement as the next statement to be
executed for the cloned state. We then update the path constraint in both states with the condition
and its logical negation, respectively. Then, we continue the execution of the current state into the
true block with the new path constraint.

When the current state finishes execution in the current activation record (for example, if a
return statement is encountered), we check if there are any sibling states. If there exist any, we

switch to resume execution of that sibling state, until it finishes execution.

Loops and Recursion

Loops and recursion are another source of branching in a program execution, and often considered
as a major challenge in symbolic execution [4]. Each iteration of a loop creates a new path in the
program execution, since the program needs to evaluate the loop condition and decide whether to
continue the loop or exit. The same holds for recursions. As a result, if the loop condition or the
recursion termination condition is symbolic, the program will often end up with an exponential

number of paths. To make it worse, if the symbolic execution engine does not have enough
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information on the loop condition or the recursion termination condition, it may run into an infinite
loop or an infinite recursion; consider the following example:

let i = 0;

while (Math.random() > 0) {

// do something
i+

>

console.log(i);

}

Since we have no information what Math.random() will return, the loop must consider both cases
where it is greater than 0 and less than or equal to 0 at each iteration, which will result in an infinite
number of paths.

Even for bounded loops that are guaranteed to terminate, the number of paths can still grow
exponentially with the number of iterations and becomes infeasible to explore. For example, consider

the following loop:

let n = ...; // a numerical symbolic input
for (let i = 0; i < mn; i++) {

// do something

console.log(i);

5 }

In this case, we know that the program will terminate after n iterations, because the loop counter
i is incremented by 1 at each iteration, the loop condition is 1 < n. Moreover, n as a number has a
maximum value of about 1.8 x 103%8 in JavaScript [29, §21.1.2.7]. Not knowing the concrete value of
n, we have to consider all possible values that n can take, creating 1.8 x 103°% possible paths, which
is infeasible to explore.

To simplify the handling of loops, we only support bounded, well-structured loops. If the
condition can evaluate to a concrete value, the loop is unrolled and executed as a series of statements.
If the condition is symbolic, the loop must be iterations over an array and can be rewritten as a
forEach statement. We do not support recursions as of now, due to their lack of usage in real-world
industrial codebases. The simplification over arrays are made possible because we model arrays in our
symbolic execution engine as a list of the same values, with a symbolic length (see subsection 4.2.2).
Hence, when we encounter a loop that iterates over an array, we can simply perform the loop body
once on the value of array elements, and keep the symbolic length the same. This way, we are able to
avoid the exponential explosion of paths that would have occurred if we had to consider all possible
values for each of the array elements, while still retaining the relevant information to reason about

the OpenAPI specification conformance property.

4.2.4 Other Control Flow Indirections

Other than the control flow statements listed above, there also exist other control flow indirections
that do not create multiple paths, but change the control flow of the program in the current path.
These include function calls, early returns, and exceptions.

When a function is called, the program jumps to the function definition and executes the function

body. As a result, we store the current statement in the activation record and push a new activation



0x36 CHAPTER 4. ALGORITHMS

record onto the stack. Along with the activation record, we also create a new scope in the symbolic
store to store the local variables of the function. The new scope should also be populated with the
parameters of the function, which are passed in as arguments to the function call expression. The
function is then executed as a series of statements, and the return value is stored in the symbolic
store. When the function finishes execution, the activation record is popped from the stack, and the
program jumps back to the caller with the return value. However, not all functions finish execution
of the entire function body. Some functions may terminate early with a return statement, or throw
an exception. In our symbolic execution engine, we also have a special symbol __returned__ to
determine if a function has returned early. If the flag is set to true, the rest of the statements in the
function body are skipped without execution, and the execution returns to the caller at the end of
the block.

Other than return statements in function calls, break and continue statements in loops can
also terminate the current control flow early. We handle these cases similarly to that of return, by
creating a special symbol to determine if the rest of the loop body is skipped. At the end of the
loop body, we use the symbol to determine whether the loop should be exited or continued to the
next iteration.

Unfortunately, we do not currently handle exceptions in our symbolic execution engine, but
we plan to add support for them in the future. In prior works, Microsoft has added Structured
Exception Handling (SEH) to C to handle exceptions, by adding special function prologue and
epilogue instructions to the function runtime [53, 78]. We plan to follow a similar approach by
model exception throwing and handling as special function prologue and epilogue logic. Since we
are already modeling early return as skipping the rest of the function body, the addition of function

prologues and epilogues should be relatively straightforward.

4.2.5 Handling of Library Codes and Dependencies

Handling library code and dependencies is also a known challenge in symbolic execution [1]. In a
real-world program, it is common to interact with external environments. This includes system
environments, such as the file system, the network, or the operating system; and application
environments, such as external libraries and dependencies to speed up development and reuse code.
However, for a symbolic execution engine, the complexity of these external environments can be
overwhelming, as they are often large, complex, and oftentimes beyond the scope of the program
under analysis. Moreover, interactions with system environments may produce side effects, such as
I/0 operations, network requests, or system calls, that are difficult to model and reason about in a
symbolic execution engine. Therefore, many symbolic execution engines choose to draw a boundary
between the code under analysis and the external environment. For example, CUTE [91] and KLEE
[L1] use a combination of concrete and symbolic execution to handle system calls and external
libraries. They execute the user code symbolically, but execute the environment code with concrete
values and directly use that information to reason about the user code. However, this approach
cannot produce all possible outputs of the environment code, and may cause some possible paths

to be missed during symbolic execution. Some other symbolic execution engines require the user
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to provide some annotations or models for the environment code, or synthesize them automatically
[4, pp. 16-17]. However, this approach may require a lot of effort from the user, and may not be
feasible for large, complex, or proprietary libraries.

In this thesis, we choose to treat most external library code as a black box and only reason about
the user code. Whenever we encounter a function call to a library function, we model it as a 73
uninterpreted function and try to extract available information from type annotations if possible.
However, this means that we are losing all information that is previously gained on the parameters,
and the return value would be mapped as a completely new symbolic value that we know nothing
about. In the future, we plan to give user the option to provide some annotations on how the library
function maps its input to output, or to instruct the symbolic execution engine to skip some simple
library functions that provide simple utilities, such as re-formatting a string.

However, the web framework library is an exception. REST servers written in Express.JS, the
target web framework library in our analysis, are heavily integrated with the library. Instead of
calling the library functions, all handler functions are callbacks to be called by the Express.JS library.
Furthermore, the complexity of the Express.JS library and its extensive interactions with incoming
network requests make it infeasible to analyze the library code as-is. Moreover, the motivation of
RESTASSURED and this thesis is to help API developers to write correct RESTful API servers, not to
verify the correctness of the Express.JS library. We believe it is reasonable to turn verification effort
to the user code, which is more likely to contain bugs, compared to the widely-used and well-tested
Express.JS library. Therefore, we assume that the Express.JS library does not contain bugs, and
instead build an internal model of the Express.JS library. In this model, we capture the behavior of
some Express.JS’s built-in methods, how they interact with the request and response objects, and
how they modify the state of the server. Since the model is internal and heavily integrated into how

the RESTASSURED tool works, we will discuss it in detail in the following sections.

4.3 Symbolically Modeling the Express.JS Application

Now that we have built a symbolic execution engine for RESTSCRIPT, our restricted subset of
TypeScript/JavaScript, we can use it to analyze the server-side code of a RESTful API service.
RESTASSURED uses symbolic analysis and takes a two-pass approach in analyzing the server-side
code. It first builds an internal model of the RESTful API service, including its endpoints and their
handlers, by symbolically executing the server-side code. Then, it generates symbolic requests based
on the OpenAPI specification and symbolically executes the handlers to derive a set of possible
symbolic responses, walking through all possible execution paths. In this section, we focus on the
first pass.

In the first pass, RESTASSURED identifies all REST endpoints, including their HTTP methods,
paths, parameters, and handler functions. In addition, it also parses through the definition for all
middleware functions, which are functions that are executed regardless of paths or methods, usually
before the handler functions, and can modify the request and response objects, or terminate the
request-response cycle early. In other words, we build a model of the defined Express.JS application

from the source code.
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4.3.1 An Internal Model for Express.JS Server Application

We model the Express.JS server application as part of the symbolic environment in the symbolic
execution engine. The following information is stored in the symbolic environment to represent an

Express.JS application:

o definedRoutes: Route[]. A list of all the defined routes in the server, where each route
contains the path, the method, the handler function, and the middleware functions. Each of

the Route objects is defined as follows:

catchAll: boolean. A boolean flag indicating whether the route is a catch-all route
defined by the app.use() method or app.all() method. If it is a catch-all route, it will
match all paths and methods.

— path: string. The URL path of the route.

method: string. The HTTP method of the route, e.g. GET, POST.

— handler: Function[]. A series of handler functions of the route, which are executed

when the route is matched.

e expressSettings: Map<string, string>. A map of all the settings defined in the server via

the app.set () method.

e expressRunning: boolean. A boolean flag that indicates whether the Express.JS server is

running or not. This is used to model the server startup and shutdown.

e expressPort: number. The port number that the Express.JS server is running on.

One caveat of this design is that we assume there to be only one Express.JS application per
project. This is a reasonable assumption, for while one can create multiple Express.JS applications
in one project and have them listen on different ports, it is not a common practice. Furthermore,
supporting multiple instances of Express.JS applications may complicate the design as the two
applications may share resources with each other and create side effects and interdependencies.
To enforce this assumption, we add a boolean flag expressApplicationCreated to the symbolic
environment, which is initialized to false. When the Express.JS application is created, the flag is
set to true. If the flag is already true, the symbolic execution engine raises an error. In other words,

our analysis engine will raise an error if the single Express.JS application assumption is violated.

4.3.2 Analyze Source Code for Express.JS Application Definitions

To parse the AST for Express.JS application definitions, we have enhanced our symbolic execution
engine with a set of special symbols to represent the Express.JS library functions and objects. These
special symbols are used to recognize the Express.JS library functions and objects during symbolic
execution of the RESTSCRIPT code. When they are encountered, the symbolic execution engine will
intercept the execution and update the internal model of the Express.JS application in the symbolic
environment. Then, some special symbol representing the return value will be returned instead, to

continue model the execution and invocation of the Express.JS library functions.
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To build the internal model, we will symbolically execute the source code itself, which is essentially
defines a set of callback functions for the Express.JS application. The algorithm builds upon the
symbolic execution engine, and augments it with special symbols that are created and handled as

follows:

1. When the code imports the Express.JS library via the require("express") function call
expression, the symbolic execution engine will recognize the expression and assign a special
symbol expressjs_namespace to the return value of the function. This value is usually stored

in a constant variable, such as const express = require("express").

2. When the code calls the module’s default export expressjs_namespace() function, the
symbolic execution engine will recognize the expression and assign a special symbol
expressjs_app to the return value of the function. This value is usually stored in a constant

variable, such as const app = express().

In addition, the symbolic execution engine will update the expressApplicationCreated flag
in the symbolic environment to true. If the flag is already true, the symbolic execution engine

will raise an error, as we assume there to be only one Express.JS application per project.

3. When the code calls one of the methods of the expressjs_app object, e.g. app.use(..),
the expression is usually broken down into two expressions: a PropertyAccessExpression
that accesses the method name, and a CallExpression that invokes the method code with

parameters.

During evaluation of the PropertyAccessExpression, the symbolic execution engine will
recognize the method name and return a set of special symbols representing each method, such
as expressjs_app_get, expressjs_app_post, expressjs_app_use, etc. for the app.get,

app.post, and app.use methods, respectively.

4. During evaluation of the CallExpression, the symbolic execution engine will recognize the
special symbol representing the method name and update the internal model of the Express.JS

application in the symbolic environment accordingly.

e For the app.use(handler, ..) method, the symbolic execution engine will append a new
Route object to the definedRoutes list in the symbolic environment, which has the
catchAll flag set to true, and the handler set to the handler function(s).

o For the app.set(key, value) method, the symbolic execution engine will update the
expressSettings map in the symbolic environment with the key-value pair of the setting

name and setting value.

o For the app.get() method, the symbolic execution engine will first need to determine
from the number and type of parameters whether the method is being used to define a
route or to retrieve a setting.

If the method is being used to retrieve a setting, i.e. app.get(key), the symbolic

execution engine retrieves the setting from the expressSettings map in the symbolic
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environment and returns the value of the setting. If the key is not found in the
expressSettings map, the symbolic execution engine will raise an error. It shall be
noted that the Express.JS engine also comes with a list of predefined setting names and

default values, such as "env", "etag", "x-powered-by" [30].

If the method is being used to define a route, i.e. app.get(path, handler, ..), the
symbolic execution engine will append a new Route object to the definedRoutes list
in the symbolic environment, which has the catchAll flag set to false, the method
set to "GET", and the path and handler set to the path and handler function(s),
respectively. The engine will also return the expressjs_app special symbol to support

method chaining.

Note that, Express.JS allows the path to be a regular expression, such as ~\/user\/.+$,
or a templated path, such as /user/:id. Hence, for simplicity in design, the symbolic
execution engine handles all paths as regular expressions. All regular string paths are
converted to regular expressions by escaping special characters and adding the start and
end of string tokens, so that they match exactly the same paths as the string paths. For
path parameters, the parameter name is replaced with a regular expression that matches
any character except for the path separator / and the query string separator 7. For

example, the path /user/:id is converted to the regular expression ~\/user\/[~7\/]+$.

For other HT'TP methods like app.post, app.put, app.delete with parameters (path,
handler, ..), the symbolic execution engine will follow the same procedure as the
app.get(path, handler, ..) method, but with the method set to "POST", "PUT",
"DELETE", etc., respectively.

For the app.all(path, handler, ..) method, the symbolic execution engine will follow
the same procedure as the app.get (path, handler, ..) method, but with the catchAll

flag set to true.

For the app.route(path) method, the symbolic execution engine will return the special
symbol expressjs_app_route with the path name. When the get (), post (), or other
HTTP methods are called on the expressjs_app_route object, the symbolic execution
engine will follow the same procedure as above, but with the path set to the path name

of the expressjs_app_route object.

For the app.listen(port, ..) method, the symbolic execution engine will update
the expressPort value in the symbolic environment with the port number, and the

expressRunning flag to true.

Multiple Models due to Multipath Execution

By now, we have established a model for the server code, composed of all of its routes and handlers.

However, we may also end up with more than one model, especially if the server code contains

branches. For example, the server may start up in different modes, depending on certain environment

variables, and offer different paths, or handle requests differently. An example is shown in L30 in
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Listing 3.4, where the server defines different fallback handlers based on the environment variable
NODE_ENV. In that case, we would end up with two different models of the server, one for each branch
of the if-else statement. The models would have the corresponding branching condition as its path
constraint, and a different set of defined routes and handlers. This is a unique advantage of symbolic
execution, as it is guaranteed to handle all scenarios of multiple path occurring. In contrast, most
testing approaches assume the server to be a single non-changing entity, and ignores the variation

in server initialization conditions.

4.4 Examining and Executing the Symbolic Model

In the second pass of RESTASSURED, we analyze the model(s) of the Express.JS application
and determine whether they conform to the OpenAPI specification, following the properties in
Definition 3.7. If there exists more than one model, we perform the following procedure for each
model, preserving and building upon the path constraints from the earlier execution.

We first check the simple properties, such as soundness and completeness for specified endpoints.
To put it more plainly, we check whether all specified endpoints are implemented and whether all
implemented endpoints are specified. These properties are checked by examining the defined routes
in the model and comparing them to the API endpoint definitions in the OpenAPI specification.
The analysis does not need to invoke the symbolic execution engine. Then, we check more complex
properties, such as the validity of the response status codes, the presence of required response
body fields, and the correctness of response body types. To do so, we must symbolically execute
handler functions for defined routes, and check for specification violations in the responses. For each
defined route in the model, we generate symbolic requests based on the OpenAPI specification, and
symbolically execute the handler functions to derive a set of possible symbolic responses. Then,
we check for specification violations, such as invalid status codes, missing response body fields, or
incorrect response body types. If the expected type contains refinement predicates, we invoke a
constraint solver, Z3, to check if the predicates can hold for all possible values in the symbolic

response.

4.4.1 Examining Router and Endpoints Definitions

Given a model of all defined routes, we are now able to check the first property in Definition 3.7, the
soundness of specified endpoints, or the existence of the specified routes in the server implementation.
For each of the API endpoint definitions in the OpenAPI specification, we check if there exists some
non-catchAll route in the model that matches the path and method of the endpoint definition.

In routing the request, we simulate the routing logic of the Express.JS server, as described in
section 3.3.2. The incoming request goes through all the defined routes in the order they are defined,
and skips over routes that do not match the path or method of the request. Whenever we find a
route with a matching path, we mark the API endpoint definition as fulfilled, and continue to the
next endpoint definition. One particularity of the Express.JS routing logic is that it allows path

to be stated as a regular expression. So during matching, we have to check if the path matches
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the regular expression, instead of a simple string comparison. The same goes for templated paths,
where the path may contain parameters that are extracted and passed to the handler function, such
as /user/id (in OpenAPI definitions) or /user/:id (in Express.JS definitions). In the first pass,
we have already converted all string paths to regular expressions, so we can directly run a regular
expression match on the path of the request. In addition, observe that the path parameters in the
OpenAPIT definition ({param_name}) can be matched by our converted regular expression [~7\/]+.
For example, the path /user/:id in the Express.JS definition is converted to the regular expression
“\/user\/["?\/]1+$, which can match the path /user/{id} in the OpenAPI definition. Hence, we
can conveniently run the regex match against full paths with parameters, without the need to parse
and put in placeholder values.

Note, however, that the process here is only a preliminary check and may result in false negatives
(but not first positives). It is perfectly possible that the handler for the matched route is unreachable
in reality. For example, a catchAll middleware may terminate a request-response cycle early, or
a matched handler may never produce an HTTP response due to a bug in the code. As a result,
we will be able to immediately report to the user that certain HT'TP paths are not fulfilled by any
defined routes, but we may not be able to guarantee otherwise.

In the same process, we are also able to check the third property in Definition 3.7, the
completeness of specified endpoints, or the non-existence of any implemented but unspecified routes.
To do so, we create a dictionary visited for each entry in the defined routes. All values are
initialized to false, except for the catchAll routes, which are initialized to true, for they will be
trivially matched by any request. Then, during the routing process, we set the corresponding value
in the visited dictionary to true when a route is matched. When all the specified routes have
been checked, we go through the visited dictionary and report any routes that are still false as
implemented but unspecified routes. While these routes do not violate specification conformity per
se, they indicate sources of potential undocumented behavior or extraneous interfaces that should
probably not be exposed. If some of these routes are intended for internal use, they should be
guarded with some form of authentication or access control mechanism. Trying to hide them in the

specification is a form of “security through obscurity” [1], a bad security practice.

4.4.2 Generating Symbolic Requests

Now, let us move on to the second property in Definition 3.7, the well-definedness of the handler
functions, or the validity of the response produced by the handler functions. In other words, for
all valid requests, the handler function should produce a response that is well-defined with regard
to the specified response schema. To do so, we must invoke and symbolically execute the handler
functions of the defined routes, and check for specification violations in the responses. However, to
symbolically execute the handler functions, we need to first determine and symbolize the inputs to
these handler functions, which include the request parameters, the request body, and the request
headers. Fortunately, the OpenAPI specification provides a clear definition of the request for each
endpoint. Hence, we generate symbolic requests from the OpenAPI specification, and use them as

inputs to the handler functions.
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The Symbolic Request Object

First, let us formalize how a request is being symbolized for our symbolic execution engine. A

symbolic request contains the following components:

method: string. The HTTP method of the request, e.g. GET, POST.

path: string. The URL path of the request. A real-world path may also contain path
parameters and query parameters that are part of the request. However, we choose to symbolize

them separately for ease of analysis.

params: Map<string, Value<Type>>. A map of the path parameters of the request. The

keys are the parameter names, and the values are values of some Type.

query: Map<string, Value<Type>>. A map of query parameters of the request. The keys

are the parameter names, and the values are values of some Type.

headers: Map<string, Value<Type>>. A map of custom HTTP headers used in the request.

The keys are the header names, and the values are values of some Type.

body. The request body of the request. The body may be a JSON object, a form data, or a
file, depending on the content type in the specification. As a result, the type of this object is
a union type of the possible types of the request body.

The body is usually a JSON object (application/json), in which case the type would be:
{ type: "json"; value: { [key: string]: Value<String> } }.
The keys are field names of the JSON object, and the values are values of type string.

The body can also be of type form data (application/x-www-form-urlencoded), in which
case the type of the body would be similar to that of the JSON object:
{ type: "form"; value: { [key: string]: Value<String> } }.

Lastly, the body can be of MIME type text/plain, in which case the type would be:
{ type: "text"; value: Value<String> }.

Note that, in our current design, we only support three possible types of body schemas, JSON,
form data, and plain text. We do not currently support files or vendor-specific content types,
such as application/vnd.github.v3.diff, as specified in RFC 6838 [41].

Filling in a Symbolic Request

We then parse the OpenAPI specification and fill in the symbolic request object with symbolic

values. For each defined endpoint in the specification, we generate a symbolic request object, and
fill in the method and path fields with the method and path of the endpoint. Then, we parse the
parameters field in the OpenAPI specification (at both the path and the method level), and fill in

the path params, query parameters, and headers fields of the symbolic request object respectively,

depending on the parameter type. For these parameters, we would keep their respective names,

and insert a symbolic value of the declared type as their values. If no types are declared in the

specification, we would default to type string. These symbols may then be interpreted as sets of
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possible values during the symbolic execution of the handler functions. For request body, we first
determine the MIME type of the body from the OpenAPI specification, and then fill in the body
field similarly with defined field names and symbolic values.

One peculiarity of the OpenAPI specification is that a field may be an array of a given schema.
Since the array is of the same type, we assume that all elements are of the same type of data. Thus,
for simplicity of analysis, we model the array of objects in the same way as a singular object, with

an extra symbolic field to represent the length of the array (see subsection 4.2.2).

4.4.3 Symbolically Executing the Handlers

After we have a symbolic request, we are to simulate its execution in the model of Express.JS
application. Like in subsection 4.4.1, we simulate the routing logic of the Express.JS server, and go

through each of the defined routes to derive the symbolic response object.

The Symbolic Response Object

The symbolic response object is similar to the symbolic request object, but is stored as a part of the
symbolic environment. Because each request may go through multiple handler functions, and each
request can only produce one response, it is the best design choice to store the response object in
the symbolic environment, and update it as the request goes through the handler functions. The

symbolic response object contains the following components:

e expressResponseSent: boolean. A boolean flag that indicates whether the response has been

sent. If the response has been sent, the handler function should not send another response.
e expressResponseStatusCode: number. The status code of the response.

o expressResponseBody: SymbolicValue<Type>. The body of the response. The type of the
body is usually a computed symbolic expression based on the symbols in the request. The
Type is dependent on the handlers that produce the response body, which may be an Object
or a String. In some cases, it may also be a concrete value, if the handler functions always

produce some concrete value not dependent on the symbols in the request.

o expressResponseHeaders: Map<string, SymbolicValue<Type>>. A map of custom HTTP
headers used in the response. The keys are the header names, and the values are similarly
computed expressions dependent on the input symbols. Here, the Type is most commonly

string, but depending on the handler functions, it may also be number or boolean.

Invocation of Handler Functions

For any given symbolic request, we will go through each of the defined routes in the order they
are defined, skipping over routes with unmatching paths or methods, and symbolically execute the
handler functions of the matched routes. There are a few special cases that we handle directly
without invoking the symbolic execution engine, such as the built-in middleware of Express.JS like

express. json() that parses the request body. When we encounter express. json(), we will treat
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the body field of the symbolic request object as a parsed JSON object instead of a plain string,
and continue the execution. For user-defined middlewares and handler functions, we will invoke
the symbolic execution engine to simulate the execution of these functions, as if they are called by
the Express.JS application, and update the internal model of the Express.JS application with the
response.

To model the handler functions’ interaction with the Express.JS library, we similarly augment
the symbolic execution engine with a set of special symbols to represent the Express.JS library
functions and objects, and intercept the execution of these functions, like we did in subsection 4.3.2.

The algorithm works as follows:

1. When a handler or a middleware function is invoked, three parameters are usually
passed in: (req, res, next). The function may choose to only use req and res,
or may choose to call next() to pass the control to the next middleware or handler
function. Regardless, the symbolic execution engine models them as special symbols
expressjs_callback_req, expressjs_callback_res, and expressjs_callback_next, and
assigns them to the corresponding parameter variables in the function scope of the symbolic

store.

2. Then, the symbolic execution engine executes the handler function as a normal function, until

it recognizes one of the special symbols and intercepts execution.

3. If one of the expressions tries to access the request object req, the symbolic execution engine
will intercept the expression and return the corresponding value from the symbolic request

object.

For example, if the program tries to access the request body (req.body field), the symbolic
execution engine will recognize the expression and return either a plain string of the body or
a JavaScript object representing the parsed JSON object, if the middleware express.json()
has been called. If the program tries to access the path parameters (req.params field) or
query parameters (req.query field), the symbolic execution engine will return a map of the

parameters from the symbolic request.

Alternatively, the program may also try to read a header from the request, such as
req.get ("Content-Type"), in which case the symbolic execution engine will return the

corresponding value from the headers map in the symbolic request.

There also exist some other fields, such as req.cookies that access the cookies in the request

and req.ip which gets the IP address of the requester, which we do not currently support.

4. If one of the expressions tries to modify the response object res, the symbolic execution engine
will intercept the expression and update the corresponding field in the symbolic response object,

similar to how it handles the request object.

If the program wants to send a response directly using the res.send() method, the symbolic
execution engine will update the expressResponseBody field of the symbolic response object

with the parameter passed to the res.send() method. It will also update the Content-Type
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header in the expressResponseHeaders map, recognizing the type of the parameter passed
to the res.send() method. If the expressResponseStatusCode field has not been set,
it will be set to 200 by default. The symbolic execution engine will also update the
expressResponseSent flag to true, to indicate that the response has been sent. Any further
attempts to modify the response will result in an error. The similar is done for the res. json()
method, which is a shorthand for res.send() with the Content-Type header specifically set

to application/json.

If the program wants to set a non-200 HTTP status code (using the res.status () method), the
symbolic execution engine will update the expressResponseStatusCode field of the symbolic
response object with the parameter passed to the res.status() method. It will return
the response symbol expressjs_callback_res to support method chaining. Note that the
res.status() method does not send the response and can only be used before the response
is sent out with res.send() or res.json(). There is also the res.sendStatus() method,

which is a shorthand that sets the status code and then immediately sends the response.

There also exists some other methods that sends files (res.sendFile()), sets cookies
(res.cookie()), or redirects the request (res.redirect()), which we do not currently

support.

In Express.JS, the request may be matched by more than one handlers, and the control may
be passed to the next handler by calling the next() function. When the handler function
calls the next () function, the symbolic execution engine will recognize the special symbol and
attempts to find the next middleware or handler function that matches the request to execute.
When these functions are found, the same procedure will be applied recursively, until the list is
exhausted or when the handler function ends without calling next (). When the callee returns,
it returns to the next statement after the next () call in the caller, and the symbolic execution

engine continues the execution of the caller.

If the handler function ends without calling next(), the symbolic execution engine will
terminate the handling of the request, and deem the symbolic response produced as the final

response.

Due to the possible existence of branching and multiple execution paths, we may end up with

a set of possible symbolic responses and their corresponding path constraints. We will now turn to

the last step of our algorithm, in which we check these responses for specification violations.

4.4.4 Checking Responses for Specification Violations

To check if an individual response is well-formed, we need to compare it to the list of valid responses

in the OpenAPI specification. In other words, for each response, there must exist some defined

response in the OpenAPI specification that:

shares the same HTTP status code,
contains all the defined HTTP headers of the correct types,
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e and has a response body which contains all the required fields with the correct types.

e If the type contains refinement predicates, the predicates should hold true for all possible

values of the field.

The verification for any given symbolic response is carried out as follows:

1.

We first check the satisfiability of the path constraints to determine if the execution path
producing the response is reachable. If the path constraint is unsatisfiable, the path leading
to the response is considered unreachable. We will then discard the symbolic response and

continue to the next response.

We then find the response with the same status code in the OpenAPI specification. If no
such response is found, we report an error, as the produced response is not specified in the

specification, resulting in a violation of the OpenAPI specification.

If we have located one such response (note that there can only be one response with the same
status code in the OpenAPI specification), we then check the headers of the response. For each
header (key) in the specification, the symbolic response must also contain the same header. If
the header is missing in the symbolic response, we report an error, as the produced response
is missing a required header, signaling a violation of the OpenAPI specification. If the header
is present, we check if the type of the header in the symbolic response matches the type of the
header in the OpenAPI specification. If the types do not match, we report an error, signaling

a violation of the OpenAPI specification.

Lastly, we check the response body of the response. The response body must first be of the
same type (a JSON object or a plain string) as specified. If it is a JSON object, it should
have all the specified (required) fields. In addition, each field must have the correct type, as
specified in the OpenAPI specification. If the type contains a refinement predicate, we invoke
73 to check if the predicate holds for all possible values of the field. If any of the fields are
missing or have the wrong type, we report an error, signaling a violation of the OpenAPI
specification. If the specified response body is a plain string, the symbolic response is always

correct, because the response body is always a string (either serialized JSON or plain text).

If all the checks pass, we consider the response to be well-formed, and continue to the next

response.

The types in OpenAPI specification are more expressive than nominal types, and requires a

technique more powerful than nominal type checking. The symbolic execution engine can check for

existence of fields and their nominal types, by comparing the fields in the symbolic response with

the expected primitive types in the OpenAPI specification. However, the OpenAPI specification can

also have additional predicated attached to the types. For example, it may require a number to be

within a minimum and maximum range, or require a string to be of format: uuid or even a regex

pattern. When these predicates are present, the symbolic execution engine must invoke a constraint

solver to check if the symbolic values satisfy the predicates. Hence, we translate the requirements
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into SMT formulas, negate them, and disjunct them. We then conjunct the path constraints with
the disjunction of the negated SMT formulas, and send the resulting formula to Z3 [24] to check
for satisfiability. To put it more formally, for predicates P;, Ps,..., P, on a field f, we check the
satisfiability of the following formula:

Path Constraints A (\/ ﬁPi(f)>

i=1

In this way, if the symbolic value of the field can violate any of the predicates, the formula will
be satisfiable, and we report an error to the user. The formula will only be unsatisfiable if for all
possible concrete values represented by the symbolic value, the field can satisfy all the predicates.
Hence, the response is considered well-formed if the formula is unsatisfiable.

Note that here we only choose to report this type of specification violation as a warning, as the
violation may not always be a bug in the code, but are instead caused by an underconstrained input
in the specification or lack of information in the code. For example, an endpoint may read a user’s
UUID from the database, and the OpenAPI specification may require the UUID to be a valid UUID
string. However, having no knowledge of the database schema and the content stored, the symbolic
execution engine cannot guarantee that the UUID will always be a valid UUID string. As a result,
these violations may be false positives without user-added annotations. For now, we report them as

warnings, so as to not distract users from more serious bugs that are guaranteed to be present.

4.5 Summary

In this chapter, we have presented the design of RESTASSURED, a symbolic execution-based tool for
verifying the conformance of Express.JS applications to OpenAPI specifications. We have built a
symbolic execution engine for RESTSCRIPT, a subset of JavaScript that models most of the common
language features used in a typical Express.JS application. We have also extended the symbolic
execution engine with special symbols to represent the Express.JS library functions and objects, and
to model the internal states of the Express.JS application. We have described the general workflow

of RESTASSURED, which is summarized in the flowchart Figure 4.1.
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Implementation

And programming computers was so fascinating. You create your
own little universe, and then it does what you tell it to do.
— Vint Cerf, in an AARP interview [23]

5.1 Overview

RESTASSURED is composed of several components, including a parser for TypeScript/JavaScript,
a parser for OpenAPI Specification, a symbolic execution engine, an internal model simulating the
Express.JS library logic, and a conformance checker that communicates with the Z3 constraint solver.
Here, we briefly divide the components into three categories: input preprocessing, symbolic executor,
and conformance checker. Note that these are not the only components in RESTASSURED. I have
also written various small utility programs and tools to help with the development and evaluation of
RESTASSURED, such as a TypeScript compiler transformer program to traverse and pretty print the
AST of input programs, a JavaScript program to go into all benchmarks and extract the OpenAPI
specification from JSDoc comments, a shell script to run all benchmarks and extract the relevant
results, ... For brevity, we will only discuss the main components in this chapter.

Most of these components are implemented in the TypeScript language, which allows us
integration with the TypeScript Compiler API and ability to easily model RESTSCRIPT execution
semantics. In the following sections, we will briefly describe how these components implement the
algorithms and techniques discussed in the previous chapter, and how they interact with other

existing libraries and tools.

5.2 Input Preprocessing

RESTASSURED takes in two inputs, an implementation code written in RESTSCRIPT and an
OpenAPI Specification file. Hence, the entrypoint of RESTASSURED is the parser for both inputs.

0x43
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5.2.1 Preprocessing and Parsing RestScript Codes

RESTSCRIPT is a subset of TypeScript. Hence, we are able to use any TypeScript/JavaScript-
compliant tools to preprocess and parse the RESTSCRIPT code.

Firstly, we preprocess the input RESTSCRIPT code to inline all modules and dependencies into a
single file, so we do not need to properly support modules (either CommonJS or ES modules) in our
symbolic execution engine. This is done by the rollup bundler [38] with the configuration shown

in Listing 5.1.

import commonjs from "@rollup/plugin-commonjs";

import { nodeResolve } from "@rollup/plugin-node-resolve";
import autoExternal from "rollup-plugin-auto-external";
import { babel } from "@rollup/plugin-babel";

; export default {

input: "app.js",
output: {
dir: "output",
format: "cjs",

}7
external: ["express"], // do not include expressjs, which we model internally
plugins: [
// comment next line to include external dependencies for analysis
autoExternal(), // ignore external dependencies in the bundle
commonjs(), // cjs modules require()'d
nodeResolve(), // es modules import'ed
// Transpile with Babel to ES5
babel ({
babelHelpers: "bundled",
presets: ["@babel/preset-env"],
b,

Listing 5.1: Rollup configuration to inline all internal modules

We configure rollup to inline both CommonJS and ES modules, but only do so for internal
modules (i.e., modules that are part of the implementation repository). We mark express explicitly
as an external module to exclude it from the bundle, as we choose to model it in the symbolic
execution engine. In addition, we also choose to ignore all external modules (i.e. dependencies
that are installed by npm or yarn) in the bundle. While including those modules will allow us
to conduct a more comprehensive analysis, it will also significantly increase the complexity of the
code under analysis. Library code is often written in a general way to support various use cases.
However, the generality leads to code complexity and create a large number of execution paths for
the symbolic execution engine to explore, which may not be necessary for the analysis of the specific
server under test. As a result, we think it is more beneficial to focus on the internal modules written
by the developer and model calls to external modules as an uninterpreted function in the symbolic
execution engine. In this way, we also maintain the soundness of the analysis, as an uninterpreted

function can be used to represent any function with unknown behavior.
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Last but not least, we transpile the code to ES5 using the babel plugin [3], because RESTSCRIPT
more closely resembles ES5 syntax. By rewriting many modern JavaScript features into ES5, they
have a larger chance of being supported by our symbolic execution engine. Ideally, we could
also write a babel preset that directly transpiles modern JavaScript/TypeScript to RESTSCRIPT
syntax, but we leave it as a future work. However, note that if babel is run on TypeScript code
(with "@babel/plugin-transform-typescript" plugin), it will strip out the type annotations and
interfaces, leading to loss of information for the analysis. Therefore, we only enable babel if the
input code is in JavaScript and contains ES6+ features.

After preprocessing, we are to now parse the RESTSCRIPT code into an abstract syntax tree
(AST). Since RESTSCRIPT is a proper subset of TypeScript, we can use the TypeScript Compiler
API to do so. Specifically, we will use fs.readFileSync() to read the preprocessed file and use the
ts.createSourceFile() function to parse the code into an AST. The TypeScript Compiler API
provides us many ways to traverse the AST, which we can use to print out and visualize the AST
nodes. For example, we can parse the motivating example in Listing 1.1 into an AST shown in
Figure 5.1. Even for a simple 15-line program, the AST could consist of 103 nodes of 24 different
kinds. In fact, the TypeScript Compiler API provides a total of 363 different SyntaxKinds for the
AST nodes [67]. As shown, the AST of a real-world programming language is often a complex data
structure that takes much effort to understand and manipulate. We will discuss how this AST is

then manipulated and executed in the symbolic execution engine in section 5.3.

5.2.2 Generating and Parsing OpenAPI Specifications

Other than the implementation code, RESTASSURED also takes in an OpenAPI Specification file.
For projects that come with a swagger. json or openapi.yaml file, we can directly take the file as
input. However, many projects do not have a separate swagger file. Instead, the swagger definitions
are found in the source code, often in the form of JSDoc comments, as in the motivating example in
Listing 1.1. In this case, we need to parse the JSDoc comments to extract the OpenAPI Specification.
We have written a small JavaScript program to automatically invoke swagger-jsdoc [97] to do so
for each project we analyze.

Given an OpenAPIT specification, either in the form of a yaml or json file, we use a third-party
library called openapi-ts-json-schema [14] to translate it into a TypeScript object. In this way, we
can easily access and manipulate them in the symbolic execution engine. For example, the OpenAPI
Specification in Listing 1.1 can be parsed into a TypeScript object as shown in Listing 5.2. The
TypeScript object is then able to be read in by the symbolic execution engine to generate symbolic
requests and check symbolic responses for conformance properties.

Other than openapi-ts-json-schema, we have also experimented with some of the more popular
libraries, such as swagger-codegen [99] and openapi-typescript [31]. However, both of these
libraries generate TypeScript interfaces for the OpenAPI Specification types. While it is useful for
type-checking and code completion for developers, it is not as useful for our symbolic execution
engine; because when TypeScript codes are compiled to JavaScript, the type information (which

interfaces are a part of) is erased. Therefore, the symbolic execution engine will not be able to
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TypeScript AST Viewer

1 const express = require("express"}); & courceFile

2 const app = express(}; vVariableStatement

3 app.post("/login®, (xeq, res) => { vVarlat.)IeDecIaranthlst

5 const { username, password } = req.body; vVariableDeclaration

6 Identifier

7 if (lusername || !password) { // field missing vCallExpression

8 Tes.status(400).json({ message: "Malformed request" }); 1 Identifier

9 return;

10 } StringLiteral

11 »VariableStatement

12 const user = uysers.find(/* ... simulate database check ... */); — vExpressionStatement

13 if (user) { // found vCallExpression

14 res.json({ message: "Login successful", username }); .

15 } else { // not found »PropertyAccessExpression

16 res.status(401).json({ message: "Login failed" }); StringLiteral

17 } vArrowFunction

18 }): »Parameter

19 »Parameter
EqualsGreaterThanToken

vBlock
»VariableStatement
vIfStatement
»BinaryExpression
vBlock

vExpressionStatement
vCallExpression
vPropertyAccessExpression
vCallExpression
vPropertyAccessExpression

Pos 501, Ln 19, Col 1 Identifier
10 Identifier
2 factory.createVariableStatement( NumericLiteral
3 undefined, .-
4 factory.createVariableDeclarationList( Ilden'glf\er )
5 [factory.createVariableDeclaration( vObjectLiteralExpression
6 factory.createldentifier("express"), vPropertyAssignment
7 undefined, Identifier
8 undefined, =l
9 factory.createCallExpression( StringLiteral
10 factory.createIdentifier("require"), ReturnStatement
1 undefined, »VariableStatement
12 [factory.createStringliteral(“express")] wIfStatement
13 ) .
14 1. EndOfFileToken

Figure 5.1: Abstract Syntax Tree (AST) for the motivating example in Listing 1.1. The AST is
visualized by the online tool TypeScript AST Viewer [92], which visits all nodes recursively via the
TypeScript Compiler API node.forEachChild(node => ..).

The source code is shown on the upper left, and the corresponding AST is shown on the right. The
lower left box shows the factory code to generate the AST nodes using the TypeScript Compiler
API. The AST is partially collapsed to fit the screen.
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export default {
post: {
summary: "Login to the application.",
requestBody: {
required: true,
content: {
"application/json": {
schema: {
type: "object",
properties: {
username: { type: "string" },
password: { type: "string" },

1,
}’
}’
}’
}7
responses: {
n200n: {
description: "Login successful.",
content: {
"application/json": {
schema: {
type: "object",
properties: {
message: {
type: "string",
description: "A success message.",
}’
username: {
type: "string",
description: "Username.",
}’
1,
}’
}’
}’
})
ll401ll: {
description: "Login failed",
content: {
"application/json": {
schema: {
type: "object",
properties: {
message: {
type: "string",
description: "An error message.",
}’
},
}’
33313,

} as const;

Listing 5.2: The Parsed TypeScript object representing the OpenAPI Specification in Listing 1.1. The object
is generated by the openapi-ts-json-schema library. Output is partially collapsed to fit on page.
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access these type information at runtime, when it wants to compare the actual response with the
expected types. Hence, we chose the relatively lesser-known library openapi-ts-json-schema to

generate a TypeScript object that can be accessed at runtime.

5.3 Symbolic Execution Engine

As discussed in section 2.4.3, no existing symbolic execution engine fits our need. Hence, we have to
implement our own symbolic execution engine from first principles. The symbolic execution engine
is implemented in TypeScript, which allows us to easily manipulate the TypeScript AST and model
the semantics of the RESTSCRIPT language.

The core principles have already been detailed in section 4.2, and we will now discuss how we
implement these principles in the symbolic execution engine. This section will primarily be divided

into two parts: the data structure used and the control flow of the symbolic execution engine.

5.3.1 Data Structure

All internal data are organized in the SymbolicState class. An instance of SymbolicState
represents a single symbolic execution path. It consists the symbolic store, the path constraints, the
AST node to be executed, and internal express states.

The path constraints are an array of SMT-LIB formulae [6] that represent the constraints that

must be satisfied for the path to be feasible. For example, a path constraint could be
[(declare-const x Int), (assert (>= x 0)), (assert (< x 10))]

The symbolic store (sometimes also referred to as symbolic tables) is a map from variable names
to their Values. A Value can be either a concrete value (like a number or a string) or a symbolic
value (some SMT formula using declared symbols). The symbolic store is implemented as a stack of
maps, where a new map is pushed onto the stack whenever a new scope is entered. The stack begins
with a built_in scope, which contains the built-in functions in RESTSCRIPT. Each following stack
has an id to identify the scope, in the format of type_pos_x, such as block_pos_0. Here the pos
is the position of the AST node in the source file, provided to us by the TypeScript Compiler API.
This allows us to model the scoping rules of RESTSCRIPT, where variables declared inside a scope
is not accessible outside it.

The internal express states are special fields as detailed in subsection 4.3.1.

5.3.2 Control flow

The TypeScript Compiler API provides us many ways to traverse the AST. The most common way is
to create a transformer function using a visitor pattern and the ts.visitNode () function. However,
we choose to walk through the AST ourselves, so we can model the control flow in the symbolic
execution engine. We will recursively execute the AST, until we reach a control flow indirection,

such as a function call or a conditional statement.
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When a condition is detected, the execution path branches. We create a deep copy of the current
SymbolicState, and store it in a doubly linked list with the current state. When copied, both the
new state and the current state would have the path constraints updated with the branch condition
and the activation record updated with the AST node to resume from. This allows us to take one
path and then resume execution from the other path.

For function calls and loops, we will need to create new activation records (AR) to store the
state of the function call. However, we do not fully model the ARs as the JavaScript runtime does.
Instead, we model ARs as a special scope in the symbolic store with special types like function and
loop. They store the AST node to return to after exiting the current AR, the parameters passed to
the function, the value returned, and special control flow symbols to determine if the function has
been returned or if the loop should continue or break.

However, even though we have stored return addresses in the AR, we cannot directly jump to
the return address like in C. This is because JavaScript, the language our symbolic execution engine
runs on, does not allow programmers to directly manipulate the program counter easily. Therefore,
we have to rely on the JavaScript runtime to resume execution from the correct AR. This is done
by preserving the call stack of the symbolic execution engine. When we call a function, we push a
new AR onto the stack and instructs the symbolic execution engine to execute the function body.
When the function body finishes execution, the symbolic execution engine has to return from the
function call evaluation function to the previous stack and resume execution from there. While
this is straightforward for a function without branching, it becomes more complicated when there
are multiple paths in the function body. In the latter case, we have to finish all pending paths in
the current AR before we can return to the previous AR. Therefore, we prevent the need for the
symbolic execution engine to jump to a specific AST node in the AR, and instead models execution

by preserving the engine call stack.

5.4 73 Interface

Our symbolic execution engine uses the Z3 solver [24] to solve for SMT formulae in both path
constraints and symbolic values in the produced REST responses. While Z3 does have a JavaScript
binding, it is not as feature-complete as the official Python or C API. For example, it does not support
the string and regular expression theories [63], which are essential for conformance analysis against
refined predicates in the OpenAPI types. Moreover, the JavaScript binding runs in WebAssembly
and has some weird out of memory bugs for even the simplest SMT formula that we have not been
able to resolve.

As a result, we have turned to use the Python API for Z3, which requires us to set up a REST
API service ourselves to communicate between the symbolic execution engine in JavaScript and the
Z3 solver in Python. We have written a small RESTful server using Flask [75] to receive the SMT
formulae from the symbolic execution engine, solve them with Z3, and return the results back to the
symbolic execution engine. The symbolic execution engine will send requests with fetch() Node
API to the Flask server and wait for responses to parse them and update the symbolic store with

the results.
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Evaluation

Beware of bugs in the above code; I have only proved it correct, not tried it.

— Donald Knuth, in a memo to Stanford students [52]

Let us now evaluate the prototype implementation of RESTASSURED we have built
empirically. We have gathered a set of benchmarks, consisting of both synthetic and real-world
programs/specifications, to run RESTASSURED on. We shall use these results to answer the following

research questions (RQs):

1. Is RESTASSURED reasonably accurate with little false negatives, i.e. verified programs will
conform to specification? (section 6.2)

2. Does RESTASSURED run with reasonable speed? (section 6.3)

3. Does RESTASSURED produce actionable output? (section 6.4)

6.1 Gathering Benchmarks

We use a set of synthetic benchmarks inspired by real-world programs and bugs to evaluate our
symbolic execution engine. We established our ground-truth positives by searching for keywords like
“OpenAPI specification error” and “wrong Swagger specification” on GitHub. However, not many
projects have explicit bug reports or issues related to OpenAPI specification errors. As a result,
we also searched directly for any projects with keywords like “Express.JS AND Swagger” to find
real-world programs that use the Express.JS framework to build API endpoints with OpenAPI
specification. We then use these programs to understand the common types of mistakes and
reproduce them in the RESTSCRIPT language. We have also handcrafted some programs, so the
benchmarks cover all cases of specification violations in Definition 3.7. These benchmarks are listed
and described in Table 6.1. They are numbered from OA to 5D, where the digit represents the type
of violation being tested (except for 0 denoting miscellaneous programs) and the letter represents

the specific benchmark within that type.
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No. Description Expected Output

0A Hello World program Conform

OB Branched Hello World program Conform

oc The motivating login example (Listing 1.1) Error: Violation

0D Branched Express.JS server definition Conform for one server model and
Error: Violation for the other

1A Specified endpoint not implemented Error: Violation

1B All specified endpoints implemented Conform

1C Implementation contains unspecified endpoint Warning: Unspecified

2A Handler returns unspecified HTTP Code Error: Violation

2B Handler returns only specified HT'TP Code Conform

2C Specified HTTP Code not returned Warning: Overspecified

3A Handler returns unspecified body MIME type Error: Violation

3B Handler returns only specified body MIME type Conform

4A Handler returns missing required field Error: Violation

4B Handler returns all required fields Conform

4C Handler returns extra unspecified field Warning: Unspecified

5A Handler returns field with wrong primitive type Error: Violation

5B Handler returns field with correct primitive type Conform

5C Handler returns field with unspecified refined type Warning: Possible Violation

5D Handler returns field with specified refined type Conform

Table 6.1: The 19 synthetic benchmarks we have handcrafted to test RESTASSURED on.

No. Endpoints Branches Conformant Time (sec) Verdict Expected
Branches
0A 1 1 1 2.31 Conform v
0B 1 2 2 2.79 Conform v
0oC 1 3 2 2.90 Violate v
0D-1 1 1 1 Conform v
0D-2 1 1 0 2.42 Violate v
1A 2 1 1 2.60 Violate v
1B 2 2 2 2.34 Conform v
1C 1 1 1 2.21 Conform (Warn) v
2A 1 3 2 2.29 Violate v
2B 1 3 3 2.52 Conform (Warn) v
2C 1 2 2 2.33 Conform v
3A 1 3 1 2.46 Violate v
3B 1 3 3 2.54 Conform v
4A 1 3 2 2.41 Violate v
4B 1 3 3 2.49 Conform v
4C 1 3 3 2.35 Conform (Warn) v
5A 1 3 2 2.69 Violate v
5B 1 3 3 2.33 Conform v
5C 1 3 3 2.59 Conform (Warn) v
5D 1 3 3 2.54 Conform v

Table 6.2: The results of running RESTASSURED on the synthetic benchmarks. Note that for
benchmark 0D, two different server models are produced due to the branched server definition.

For benchmark 1A, although all produced branches are conformant, the program fails to implement
a specified endpoint and thus is still non-conformant with regard to the specification.
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6.2 Is RestAssured accurate?

The first research question we ask is whether RESTASSURED is accurate. In other words, if a
program passes verification, does it conform to the specification (no false negative)?
And also, if a program fails verification, does it necessarily violate the specification (no false positive)?

We have run RESTASSURED on the 19 synthetic benchmarks and recorded the results in Table 6.2.
The results show that RESTASSURED is able to accurately detect the 7 types of violations of the
OpenAPI specification in the synthetic benchmarks, and give warnings for the 3 types of situations
where the program is conformant to the specification but the two disagree. Note, however, that for
benchmark 5C, although the produced output may be non-conformant with regard to the refined
type of the field, we do not report it as a violation but as a warning of a possible violation. We
intentionally downgrade the severity of this type of violation to reduce the number of false positives
and to not overwhelm the user with too many error messages. As a result, RESTASSURED will gain
a lower false negative rate at the cost of a higher false positive rate. We will discuss this choice and
the rationale behind it in section 6.4.

Another interesting observation is that even for the simplest program (0A) that produces a fixed
HTTP 200 OK response with body “Hello World”, an interprocedural analysis would be required,
since we need to simulate Express.JS’s behavior to invoke the handler function and how it constructs
the response from possible requests. For the same reason, we have chosen to build an internal model
of the Express.JS framework in our symbolic execution engine, which allows us to conduct the
interprocedural analysis and reason about the behavior of the program more effectively. Naturally,
this simplification renders the analysis not totally sound, but we believe it is a reasonable trade-off
to make the analysis more practical and usable. There are also some other simplifications, which we
discuss in section 7.2.

Over all, although RESTASSURED is not sound for practical reasons, we believe it is accurate
enough to be useful for developers to verify their programs against the OpenAPI specification. From
the empirical evaluation results, it is able to detect all violations of the OpenAPI specification.
For benchmark 5C, we downgrade the error message to a warning, since RESTASSURED can only
reach the conclusion of a “Possible Violation” without further information from the user. We will
discuss whether this benchmark falls into the false positive category, and how user can provide more

information to RESTASSURED to make the analysis more precise in section 6.4.

6.3 Does RestAssured run with reasonable speed?

Another important question to answer is: does RestAssured run with reasonable speed?
Static analysis techniques, especially symbolic execution, is known to be computationally expensive,
due to the exponential explosion of path numbers in a program [4].

From our implementation of RESTASSURED, we can estimate a rough upper bound for the time

complexity of the algorithm:
On-m-b-s-t)
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6.3. DOES RESTASSURED RUN WITH REASONABLE SPEED?

[INFO] Reading API spec:

. ./examples/Oc-login/swagger. json

[INFO] Reading file: ../examples/Oc-login/server.js

[INFO] Symbolic execution complete. We now have a symbolic model for the Express.JS

— application.

[INFO] Found 1 server models in all branches of the program.

[INFO] Generating symbolic requests for the server...
[INFO] Injecting symbolic request: POST /login

[INFO] Server received request: POST /login
[INFO] Executing middleware: express.json()
[INFO] Executing handler: POST /login (function-anonymous-pos-1387-1851)

[INFO] Symbolical execution complete. 3 branches found. We will now check them for

— conformance with

specifications.

[INFO] checking response state (HTTP 400) conformance with Path Constraints:

(declare-const username

(declare-const password

(assert (or (= username

[INFO] SAT:

(define-fun username ()
n Il)

(define-fun password ()
n u)

[ERROR] response status

[INFO] expected (valid)

[ 200, 401 ]

[INFO] State 1: VIOLATE.

String)
String)
"") (= password "")))
String

String

code 400 not specified in swagger API spec. VIOLATE
codes:

[INFO] checking response state (HTTP 200) conformance with Path Constraints:

[INFO] State 2: CONFORM.

[INFO] checking response state (HTTP 401) conformance with Path Constraints:

[INFO] State 3: CONFORM.

[INFO] ANALYSIS for endpoint POST /login:

Out of 3 states, 3 are SATisfiable/reachable. In which 2 CONFORMs to specification.

[INFO] Symbolical execution complete

[INFO] FINISHED. VERDICT FOR THE SERVER: VIOLATE

Out of 1 total paths and 1 endpoints specified, O are conforming to the API spec.
The symbolic execution produced 3 states, of which 3 are SATisfiable/reachable and 2 are

— conforming to the API spec.

[INFO] MESSAGES:

[POST /login] VIOLATE: Response status code 400 not specified in swagger API spec.

Listing 6.1: Sample output of running RESTASSURED on Benchmark 0C, the motivating example Listing 1.1.
Some parts of the output have been omitted for brevity. For full output, see section C.1. Observe that
RESTASSURED is able to detect the violation of the OpenAPI specification and point out that the response
status code 400 (produced in State 1) is not specified in the API spec. RESTASSURED is also able to detect
that in two other branches (states), the program produces the correct response status codes and the correct
response body.
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Figure 6.1: The distribution of the number of endpoints in 4,110 public OpenAPI specifications in
the GitHub directory APIs-guru/Openapi-Directory.

Out of 4,110 programs, 3,938 programs (97.01%) have 150 or fewer endpoints. The 123 programs
with more than 150 endpoints are considered outliers and thus not shown. The maximum number
of endpoints is 22,361; which skews the average number of endpoints to 37.52, with a standard
deviation of 401.29.

The box plot shows the median (10), first quartile (4), and third quartile (24) of the number of
endpoints, and considers any data points outside the whiskers (0 — 38) as outliers. The histogram
shows the frequency of the number of endpoints for each program.

where n is the number of different defined server models, m is the number of endpoints in each
server, b is the number of branches/leaf states created during symbolic execution, s is the number
of program statements in each branch, and ¢ is the time complexity of the Z3 solver given the path

constraints.

Although the formula looks daunting with many factors, it is important to note that many
of them are usually small in practice. For example, most server programs tend to only define
a single server. Even when there are multiple servers, the number is usually small, accounting for
debug/testing purposes and initialization failures. The number of endpoints is also usually small. We
surveyed 4,110 public API specifications in the GitHub directory APIs-guru/Openapi-Directory
[34] and found that the median number of endpoints is 10, and 75% of specifications have 24 or
fewer endpoints. However, there does exist some extreme outliers, with the maximum number of
endpoints being 22,361. The distribution for all specifications with less than 150 endpoints (97.01%
of all 4,110 programs) is plotted in Figure 6.1. The results are a strong indicator that the number
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Figure 6.2: The time taken to run RESTASSURED on generated programs with different branch
numbers from 1 up to 980. For branch numbers greater than 990, we hit the Node.JS maximum call
stack size limit and the program crashes. The data is fitted with a polynomial curve of degree 2,
which is the best fit according to cross-validation. In all cases, RESTASSURED finishes the analysis
within a minute.

of endpoints will not be a major factor in the time complexity of RESTASSURED.

This leaves us with the number of branches and the number of statements in each branch as
the main factors that affect the performance of RESTASSURED. It is commonly believed that the
number of branches in a program grows exponentially with the length of the program, because each
conditional statement can split the program into two branches [4]. However, the claim is only true
if the program produces a full binary tree of execution paths, so the number of leave states is 2¢
where d is the depth of the tree. As a result, we do not model our O-analysis in terms of the length
of the program, but rather the number of branches times the number of statements in each branch,

which will produce a more accurate estimate of the time complexity of RESTASSURED.

We also create a set of synthetics programs with arbitrary number of branches (see section C.2),
start from a simple program with a single branch up to 1000 branches, with a step size of 10. We then
run RESTASSURED on these programs and measure the time taken to analyze the program. We are
able to run RESTASSURED on programs with up to 980 branches, after which we hit the Node.JS
maximum call stack size limit and the program crashes. The results are plotted in Figure 6.2.
For the results, we used a linear regression model to fit polynomial curves of degree 1 to 10, and
performed cross-validation to select the best model, which is of degree 2. Assuming the number of

server models and endpoints are kept constant, the curve of best fit shows that the time taken to
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run RESTASSURED scales quadratically with the number of branches in the program. It is worth
noting that the quadratic term is very tiny (of 1075 order of magnitude), making the overall time
complexity of RESTASSURED almost linear with the number of branches. The result is consistent
with our theoretical analysis. As the number of branches increases, each state also produces more
path constraints, which may slightly increase the time it takes for the Z3 solver to determine the
satisfiability of the constraints.

Overall, we show that RESTASSURED runs with reasonable speed, and can finish all synthetic
benchmarks within 3 seconds (in Table 6.2). Although the number of branches may exponentially
explode with the length of the program, we believe that the number of branches in a program is
usually smaller in practice. We empirically show that the time taken to run RESTASSURED scales
quadratically with the number of branches in the program, with a very small quadratic term. For
generated programs with up to 980 branches, RESTASSURED is able to finish the analysis within a
minute. We did, however, discover that RESTASSURED crashes when the number of branches exceeds
990, due to the Node.JS call stack size limit. As a result, we believe that the time complexity of
RESTASSURED is reasonable.

6.4 Does RestAssured produce actionable output?

The final research question we ask is: does RestAssured produce actionable output? In other
words, is the output of RESTASSURED usable and understandable by real people? We will try to
answer the question by analyzing the output of RESTASSURED on the synthetic benchmarks, for

both true positives and potential false positives.

6.4.1 Output for True Positives

For confirmed positive violations, the output of RESTASSURED is clear and actionable. For example,
in Listing 6.1, we show the output of running RESTASSURED on the motivating example (Listing 1.1).
For the final verdict, RESTASSURED produces the following output:

Out of 1 total paths and 1 endpoints specified, O are conforming to the API spec.

The symbolic execution produced 3 states, of which 3 are SATisfiable/reachable and 2 are
— conforming to the API spec.

[INFO] MESSAGES:

[POST /login] VIOLATE: Response status code 400 not specified in swagger API spec.

The output clearly states the reason for violation. In this case, the response status code 400 is not
specified in the OpenAPI specification. As a result, if the user wants to modify the specification,
they can easily add the unspecified status code to the specification.

Furthermore, in the detailed log, RESTASSURED is able to pinpoint the exact state where the

violation occurs, and use Z3 to synthesize the input values that lead to the violation.

(define-fun username () String
nn
)
(define-fun password () String

n u)
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As a result, if the user wants to modify the program instead of the specification, they can use these
concrete input values to reproduce the violation in their own environment and debug the program.

For a more complicated reason of violation, RESTASSURED is also able to provide a detailed
explanation of the violation. For example, for benchmark 4A and 5A, RESTASSURED produces the
following verdict messages respectively:

[POST /login] VIOLATE: Expected field username in response body, not found.
[POST /login] VIOLATE: Expected field username to be type number, but got Symbol<string>.

Similar to the sample output, RESTASSURED is able to provide a clear and actionable message for

the user to fix the violation, either in the program or in the specification.

6.4.2 Case Study: Benchmark 5C

Benchmark 5C: unsatisfied refinement predicate is a more complicated case, where the violation is
not as clear-cut as the others. The source code for this benchmark is shown in section C.3, which is
an adaptation of the motivating example (Listing 1.1). In this benchmark, the specification requires
the returned username field to be a string with a minimum length of 3 characters and a maximum
length of 10 characters.

During symbolic execution of the program, RESTASSURED is able to detect that the program
produces a response with a username field that is exactly the same as the input username field in
the HTTP body. However, since RESTASSURED does not have enough information to determine the
exact length of the input username field, it will report the following message:

[INFO] checking refinement predicate for field username
[WARN] response body field username may not satisfy refinement predicate. POSSIBLY VIOLATE.

3 [INFO] model:

(define-fun username () String

"A")

(define-fun |str_pos_645_Hello,_| () String
"Hello, ")

(define-fun str_pos_645_! () String
n ! ll)

(define-fun password () String

"my_super_secret_password")
From the output, if the input username field is set to the string “A”, the output username will also
violate the refinement predicate. Similarly, if the response contains some value from an external
source, such as the database or a system call, RESTASSURED will not be able to have enough
information to construct the exact set of values that may be returned.

As a result, RESTASSURED may produce a false positive for these cases, if the user will only
send a username between the length of 3 and 10 characters. We believe that this is a reasonable
trade-off, because we favor security properties and lean towards producing less false negatives, which
will give the user a false sense of security. In this case, the user can provide more information to
RESTASSURED to make the analysis more precise. For example, for this specific benchmark, the
user will be able to constrain the input username field to be a string with a length between 3 and
10 characters. As a result, RESTASSURED will be able to add the following path constraint to the

7.3 solver:
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(assert (>= (str.len username) 3))
(assert (<= (str.len username) 10))
Thus, it will determine that the returned username field will always satisfy the refinement predicate.
If, however, the username field is produced from a database query, the user may need to specify
through inline comments that, e.g., the username returned from a database query statement is always
between 3 and 10 characters long. However, in most cases, given the static nature of RESTASSURED’s
analysis, it will not be able to have enough information to determine the exact set of values that
may be returned. So, we choose to downgrade the severity of the error message to a warning, to
reduce the number of false positives and to not overwhelm the user with too many error messages.
Overall, we believe that the output of RESTASSURED is actionable and understandable. It may
produce false positives if refinement predicates are present in the OpenAPI types, but we believe that
this is a reasonable trade-off to favor security properties and to reduce the number of false negatives.
Moreover, the user is able to provide annotations to RESTASSURED to reduce the number of false
positives. Currently, these errors are reported as warnings, and the user can choose to ignore them

or to provide more information to RESTASSURED to make the analysis more precise.
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Conclusion and Discussions

Even perfect program verification can only establish that a program meets its
specification. [...] much of the essence of building a program is in fact the
debugging of the specification.

— Fred Brooks, in “No Silver Bullets” [10, p. 16]

7.1 Summary

In this thesis, we explore formally verification techniques to verify a RESTful API service’s
conformance to its specification properties. I have presented RESTASSURED, a static white-box
analysis algorithm that formally verifies a RESTful API service implemented with Express.JS in
JavaScript/TypeScript against its OpenAPI specification. I also propose RESTSCRIPT, a restricted
subset of JavaScript/TypeScript that is widely used for implementing RESTful APIs and is amenable
to static symbolic execution. This thesis describes a specific implementation of the RESTASSURED
algorithm built for RESTSCRIPT programs.

RESTASSURED takes in two inputs, the OpenAPI specification and an Express.JS server
implementation, and verifies that the implementation conforms to the specification. It uses symbolic
execution to create models of the implementation’s routing and request handling logic, exploring all
possible execution paths if the program creates a set of different server definitions, e.g. for testing
and production environments. RESTASSURED then generates symbolic requests using the OpenAPI
specification and simulates the server’s behavior in invoking middlewares and route handlers. For
each possible response produced, RESTASSURED checks that it conforms to the specification. When
a violation is found, or when the implementation disagrees with the specification, RESTASSURED
reports the discrepancy to the user, generating concrete counterexamples to aid debugging.

Using empirical evaluation on a set of synthetic benchmark programs inspired by real-world
errors, we demonstrate that RESTASSURED is effective and accurate in finding discrepancies between
the OpenAPI specification and the implementation. It runs with reasonable performance, finishing
the verification process in a minute for programs up to 980 branches. Furthermore, its output is

usually informative and detailed enough to help developers pinpoint the root cause of the discrepancy,

0x53
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or provide concrete counterexamples to help reproduce the nonconformance behavior. Last but not
least, as a static analysis tool, RESTASSURED is able to find discrepancies that are not easily found
by traditional testing methods. For example, in benchmark 0D, RESTASSURED is able to identify
that the implementation produces two different server definitions for the testing and production
environments and analyze them separately, which is not possible with traditional testing methods.
RESTASSURED is also able to identify in benchmark 1C that the implementation contains endpoints
that are not specified, which cannot be easily identified if the testing only uses the specification as
the test oracle.

At the time of proposal, to the best of author’s knowledge, RESTASSURED is the first tool
that uses purely static analysis techniques to verify server-side RESTful API code against their
OpenAPI specification. We have, however, at the time of writing, found a recent work published
a month ago that similarly uses symbolic execution to statically generate REST API specification
from the implementation [47]. The work, RESPECTOR, uses symbolic execution to generate OpenAPI
specification from the implementation. The developer can then compare the generated specification
with the original, handwritten OpenAPI specification to find discrepancies. RESTASSURED, on the
other hand, verifies the implementation program directly against the developer-written OpenAPI
specification, which solves a verification problem instead of a synthesis problem. We believe the
RESTASSURED workflow is more useful for developers who want to have the choice to either modify
the implementation or the specification to make them agree. We think that the two works are
complementary and can be used together to ensure the correctness of future RESTful API services.

Looking forward, we believe that the future of RESTful API development will benefit from the
use of formal verification techniques, in the same way that other important distributed systems, such
as smart blockchain contracts [72], have benefited. Formal verification methods can help developers
catch bugs early in the development process, well before they deploy their software in production.
Furthermore, it provides a principled way to reason about, even prove, the correctness of their
software; which existing testing techniques cannot provide. We do, however, acknowledge issues like
usability and performance that need to be addressed before formal verification techniques can be
widely adopted in practice. It is our hope that one day, formal verification techniques of nontrivial
properties will be as easy to use as linters or type checkers, and that they will be as widely adopted
as these tools are today. RESTASSURED is one attempt to make this vision a reality, by employing
static symbolic execution to verify RESTful API services against their OpenAPI specification, a
property that no one else has attempted to formally verify before. We are glad to discover that we
are not alone in this endeavor and that other researchers [17, 417] are also exploring similar ideas.
We hope that RESTASSURED will inspire future work in the direction, and that the techniques we

have developed will be useful in other domains as well.

7.2 Limitations and Future Work

That being said, we also acknowledge the limitations of RESTASSURED, consisting primarily in our
implementation of the RESTSCRIPT symbolic execution engine.

To begin with, RESTSCRIPT only captures a subset of the important JavaScript language features,
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as discussed in subsection 3.3.1. An important limitation of RESTSCRIPT is that it does not support
exception throwing and handling, which are used very commonly in server-side Express.JS code, to
ensure the robustness of the server. This could be a future direction to extend our work, where we
discuss potential solutions in subsection 4.2.4, using the same way Microsoft has added Structured
Exception Handling (SEH) to C [53, 78]. In addition, we do not support some ES6 features, such
as ES modules and classes. While we currently offer a workaround to transpile ES6 code to ES5
using Babel [3], we believe that it would be more elegant to support these features directly in our
symbolic execution engine.

In our implementation of the symbolic execution engine for RESTSCRIPT, we made some
assumptions to simplify the implementation at the cost of soundness. For example, we interpreted
the program as dynamically scoped instead of lexically scoped, which leads to unfaithful modeling
of the program’s behavior if variable shadowing and closures are used. We model arrays as an array
of the exact same content for all elements, which is good enough for the granularity of OpenAPI
specification, but makes the analysis not faithful to the actual program, especially if the program
manipulates arbitrary elements in the array. We also do not fully support unstructured loops and
recursion.

In addition, RESTSCRIPT chooses to only model a well-behaved subset of JavaScript, which is not
always the case in real-world programs. For example, we do not support dynamic re-binding of this,
which is commonly used in event handling callback functions. Although they are more commonly
seen in frontend JavaScript code, they can also be used in backend code. We do not model the full
semantics of JavaScript’s object prototype system, which allows objects to change their prototypes,
or inherited methods and properties, at runtime. We also do not support automatic type casting,
which effectively treats all equal operators (==) as strict equal operators (===). These behaviors are
all common sources of frustration and bugs in JavaScript code [7], and we believe that it would be
beneficial to support them in the future.

Moreover, in RESTASSURED’s analysis, we make some simplifying assumptions that may not hold
true in reality. For example, we assume that all handlers are side effect free, meaning the execution
of them will not change the global state of the server program and hence the order of execution
does not matter. As a result, RESTASSURED analyzes each handler in isolation, and is thus unable
to model the interactions between different handlers and time dependencies. This is a reasonable
assumption for some RESTful methods, such as GET, which are supposed to be idempotent. However,
for other methods, such as POST or PUT, this assumption may not hold true. For example, we may
imagine a server that provides an admin interface to change its configuration on the fly. Then,
the same configuration would be read in by some other handlers and change their behaviors. In
our analysis, we treat the two events as independent and reason about all possible values of the
configuration during analysis of the other handlers. However, it might be beneficial to recognize
these dependencies and interactions in our analysis.

Similarly, RESTASSURED adopts a very conservative model for interactions with external
environments, such as databases, file systems, or network. Currently, we model all of these
interactions as uninterpreted functions in Z3, which can take any value. This effectively causes us

to lose all information about the output of these interactions, even though we have full information
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over what types of values the input can take. A potential future direction is to allow the user to
provide inline annotations to specify the behavior of these uninterpreted functions, thus making the
analysis more precise. For example, supposing in benchmark 5C (see subsection 6.4.2), the username
field is read from a database, the user may want to specify that the username field is a string and
must have a length between 3 and 10 characters. These annotations will provide more information

to the symbolic execution engine, and thus reduce the number of false positives in the analysis.

In conclusion, we make many simplifying assumptions and approximations in the implementation
of RESTASSURED, at the cost of the analysis’s soundness. However, we believe that although our
analysis is not sound, it is still “soundy”, in the sense that it is “mostly sound, with specific, well-
identified unsound choices” [59] which we have discussed above. These limitations make it possible
for RESTASSURED to be implemented in the time frame of this thesis, while still providing useful
and informative results to an important subset of JavaScript and Express.JS programs. We believe
that these limitations are not fundamental to the RESTASSURED algorithm, and can be addressed

in future work to make the analysis more precise and more faithful to the actual program behavior.

7.3 Discussions

Last but not least, I would like to share and discuss some broader insights and lessons that I have

learned along the course of this project.

The OpenAPI specification is not expressive enough.

The OpenAPI specification, although named as a specification, is not at all expressive enough to
capture all semantics of a RESTful API service. In fact, it is much closer to a schema documentation
than a specification. It is not as powerful or expressive enough to capture all the constraints that
we want to check. For example, an API designer may want to specify that a login endpoint only
returns 200 if the user is authenticated, and 401 otherwise; or for all endpoints to return a 403
if an authentication token is not provided in the HTTP header. Currently, these constraints are
not expressible in the OpenAPI specification, and thus cannot be checked by RESTASSURED. In
practice, API designers and developers can only specify these desired semantic properties in plaintext
documentation, which provides no principled way to verify them.

Our analysis is only as good as the specification we are given, for “even perfect program
verification can only establish that a program meets its specification” [10]. Currently, our analysis
technique of symbolic execution overpowers the specification and is limited by the expressiveness
of the OpenAPI specification. For example, in benchmark OB, where the program produces the
output “Hello ${name}” if a name is provided in the query string, our analysis is able to tell that
the program output will always be of the form

1 Symbol<(str.++ (str.++ "Hello, " name) "!")>

given the following path constraints

1 (declare-const name String)
> (assert (> (str.len name) 0))
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However, the OpenAPI specification is only powerful enough to specify that the output is of type
string, or at the very best some regular expression “"Hello \w+!$”. It does not allow us to specify
that the output is dependent on the input field name and must contain part of the input. We hope
that future versions of the OpenAPI specification will be more expressive, allowing developers to
specify fine-grained constraints on the behavior of their RESTful API services. These advances could

prompt the development of more powerful verification tools to verify these constraints automatically.

Do we really need symbolic execution to verify conformity?

Given that the OpenAPI specification is not as expressive, the question naturally arises: do we really
need symbolic execution to verify the conformity of the implementation to the current OpenAPI
specification? For now, we have chosen to employ symbolic execution as a starting point because it is
a powerful and general technique. However, can we achieve the same verification results using more
lightweight methods, such as some form of dependent or refinement type checking methods? We do
not currently have a definitive answer to this question, but we believe that it is an interesting avenue

for future research, given the complicated inter-procedural control flow in Express.JS programs.

We could have used an off-the-shelf symbolic execution engine, or could we?

Looking from hindsight, a majority of the project’s complexity comes from building a symbolic
execution engine from scratch. We would have saved a lot of time and effort if we had chosen to
use an off-the-shelf symbolic execution engine like KLEE [11] or S2E [15]. However, none of these
popular engines support JavaScript; and as discussed in section 2.4.3, at the time of writing, all
existing symbolic execution engines developed for JavaScript are either not purely static or not
available. It seems that building a symbolic execution engine from scratch is most straightforward.
Alternatively, we could have chosen to rewrite the JavaScript/TypeScript code into a more
symbolic-execution-friendly language, such as LLVM IR or C code, and then run KLEE or S2E on
the rewritten code. This would save us some work in building the symbolic execution engine, but
rewriting JavaScript to LLVM IR or C in a semantic-preserving way is similarly a nontrivial task. In
addition, we could also choose a more static analysis friendly target language, such as Java, which
is also a popular language for back-end RESTful API services. For example, RESPECTOR performs
symbolic execution on RESTful servers implemented in Java using Spring Boot or Jersey [17].
However, we believe that the effort is not wasted. Building a symbolic execution engine from first
principles has given me a deep understanding of the techniques and challenges involved in symbolic
execution, and why static symbolic execution engines for JavaScript are not widely available. The
many quirks of JavaScript, such as its dynamic typing, object prototypes (which can be changed
at runtime), and its various scope and closure rules, make it a challenging language to analyze
statically. JavaScript is perhaps a prime example for why formal methods at its current state
is hard to be widely adopted in practice. To quote an unnamed researcher specializing in the
verification of JavaScript programs, “I have a love-hate relationship with JavaScript”, and I can
now understand why. RESTASSURED is a small step towards making formal methods available and

usable for JavaScript developers, and we hope that it will inspire future work in this direction.
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Appendix A

Example OpenAPI Specification

You can find an OpenAPI Specification in Listing A.1. This specification is generated from the

function comments in the motivating example (Listing 1.1) with [97].

i {

2 "openapi": "3.0.0",

5 "info": {

A "title": "Login API",

5 "version": "1.0.0"

6 }7

7 "paths": {

8 "/login": {

9 "post": {

10 "summary": "Login to the application.",
11 "requestBody": {

12 "required": true,

13 "content": {

14 "application/json": {

15 "schema": {

16 "type": "object",

17 "properties": {

18 "username": {

19 "type": "string"
20 }’
21 "password": {
22 "type": "string"
2 }
24 }
25 }
2 }
27 }
28 },
29 "responses": {
30 "200": {
31 "description": "Login successful.",

32 "content": {
"application/json": {

34 "schema": {

35 "type": "object",
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"properties": {
"message": {
lltype " :

APPENDIX A. EXAMPLE OPENAPI SPECIFICATION

"string",

"description": "A success message."

}!

"username": {

"type": "string",

"description": "Username."
}
}
}
}
}
}’
"401": {
"description": "Login failed",
"content": {
"application/json": {
"schema": {
"type": "object",
"properties": {
"message": {
"type": "string",
"description": "An error message."
}
}
}
}
}
}
}
}
}
}’
"components": {7},
"tags": []

}

Listing A.1: Generated OpenAPI Specification from Motivating Example Listing 1.1. For explanation of

the fields, see subsection 2.3.5
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Formal Syntax for RestScript

SourceFile
Statements

Statement

::= Statements

Block ::= "{"

VariableStatement

VariableDeclarations

= Statement

| Statement ";"

| Statement ";" Statements
| Statement "\n" Statements

Block
VariableStatement
FunctionDeclaration
ExpressionsStatement
IfStatement
WhileStatement
ForStatement
ReturnStatement
BreakStatement
ContinueStatement

Statements "}"

"const" VariableDeclarations

<... other fancy TypeScript

// semicolon is not required at EOL

= "var" VariableDeclarations
| "let" VariableDeclarations
|

VariableDeclaration

types

0x65

.>

| VariableDeclaration "," VariableDeclarations
5 VariableDeclaration ::= Name
| Name "=" Expression
| Name ":" TypeName
| Name ":" TypeName "=" Expression
TypeName ::= "string"
| "number"
| "boolean"
| "object"
| nanyn
| "VOid"
| nnullll
| "undefined"
| TypeName "[]"
|

// e.g. union types, not supported
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FunctionDeclaration
Parameters ::= "(" ParameterList
Identifier ","
Identifier ":"
Identifier

Identifier ":"

ParameterList

ExpressionsStatement

::= "function" Identifier "(" ParameterList ")" Block

APPENDIX B. FORMAL SYNTAX FOR RESTSCRIPT

ll) n
ParameterList
TypeName "," ParameterList

TypeName

::= Expression

Expression := BinaryExpression
UnaryExpression
ParenthesizedExpression
Literal
Identifier

CallExpression
NewExpression
PropertyAccessExpression
ArrayElementAccessExpression

BinaryExpression

UnaryExpression

|
|
|
|
| ArrowFunction
|
|
|
|

// syntactic sugar assignment expressions (e.g. +=) are ignored

Expression

"=" Expression

// arithmetic expressions

Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression

"+" Expression
"-" Expression
"x" Expression
"/" Expression
"%" Expression
"xx" Expression
"<<" Expression
">>" Expression
">>>" Expression

// bitwise expressions

Expression
Expression
Expression
Expression
Expression

"&" Expression
"|" Expression
"&&" Expression
"||" Expression
"?7" Expression

// comparison expressions

Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression

"==" Expression
"I=" Expression
"===" Expression
"l1==" Expression
">" Expression

">=" Expression
"<" Expression

"<=" Expression

// special expressions
| Expression "in" Expression
| Expression "instanceof" Expression

"1" Expression

" Expression

"+" Expression
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1

)9

110

"~" Expression

"++" Expression
"--" Expression
Expression "++"
Expression "--"
"typeof" Expression
"void" Expression
"delete" Expression

ParenthesizedExpression ::= "(" Expression ")"

Literal = "null"
| "true"

| "false"

| "this"

| NumericLiteral
| StringLiteral
| ObjectLiteral
|

ArrayLiteral
NumericLiteral ::= regex("[0-9]+")
StringlLiteral ::= regex("\"(["\\\"II\\\"I\\n)*\"") // other escaped characters can
// be added just like "\n"

ObjectLiteral ::= "{" PropertyNameAndValueList "}"

3 PropertyNameAndValuelList ::= PropertyNameAndValue

| PropertyNameAndValue "," PropertyNameAndValuelList

5 PropertyNameAndValue ::= Identifier ":" Expression

ArrayLiteral ::= "[" ElementList "]"
ElementList ::= Expression
| Expression "," ElementList

Identifier ::= regex("[a-zA-Z_][a-zA-Z0-9_]*") // cannot start with a number

3 ArrowFunction ::= Parameters "=>" Expression

5 CallExpression ::= Expression "(" ArgumentList ")"

ArgumentList ::= Expression[","]

NewExpression ::= "new" Expression

PropertyAccessExpression ::= Expression "." Identifier
ArrayElementAccessExpression ::= Expression "[" Expression "]"

IfStatement ::= "if" " (" Expression ")" Block
| "if" "(" Expression ")" Block "else" Block

7 WhileStatement ::= "while" "(" Expression ")" Block
ForStatement ::= "for" "(" Expression ";" Expression ";" Expression ")" Block
| "for" "(" VariableDeclaration ";" Expression ";" Expression ")" Block

| "for" "(" Expression "in" Expression ")" Block
| "for" "(" VariableDeclaration "in" Expression ")" Block

ReturnStatement ::= "return" Expression
| "return"
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BreakStatement ::

ContinueStatement :

APPENDIX B. FORMAL SYNTAX FOR RESTSCRIPT

"break" // break to label not supported
:= "continue" // continue to label not supported

Listing B.1: A formal definition of RESTSCRIPT using BNF



Appendix C

Select Synthetic Benchmarks for

Evaluating RestAssured

C.1

This is the full output produced by running RESTASSURED on the motivating example in

Full Sample Program Output of RestAssured

subsection 1.1.1 and the OpenAPI specification in Appendix A.

yarn run v1.22.19
$ npm run build

> se-engine@1.0.0 build
5 > tsc -p tsconfig.json

$ node --enable-source-maps build/index.js ../examples/Oc-login

[INFO]

[openapi-ts-json-schema] ¢/ JSON schema models generated at ./src/generated/

[INFO]
[INFO]
[INFO]
[INFO]

Reading API spec: ../examples/Oc-login/swagger.json

API spec types generated
Reading file: ../examples/Oc-login/server.js
Symbolically executing the program

Symbolic execution complete. We now have a symbolic model for the Express.JS

< application.

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

[INFO]

Found 1 server models in all branches of the program.
Executing server instance 0

Generating symbolic requests for the server...
Injecting symbolic request with path: /login
Injecting symbolic request with method: post

Server received request: POST /login

Executing middleware: express.json()

Found matching route: /login

Executing handler: function-anonymous-pos-1387-1851

EOF reached.

Multiple paths found due to branching. Continue execution.
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[INFO] Multiple paths found due to branching. Continue execution.
[INFO] Symbolical execution complete. 3 states found. We will now check them for
< conformance with specifications.

[INFO] checking response state conformance with Path Constraints (HTTP 400):
(declare-const username String)
(declare-const password String)
(assert (or (= username "") (= password "")))
[INFO] SAT:
(define-fun username () String
llll)
(define-fun password () String
llll)
[ERROR] response status code 400 not specified in swagger API spec. VIOLATE
[INFO] expected (valid) codes:
[ 200, 401 ]
[INFO] actual response:
[INFO] express response: 400
[INFO] express response header:
Map(1) { 'Content-Type' => 'application/json' }
[INFO] express response body:
Value {
type: 'object',
name: undefined,
expression: Expression {
value: {
message: Value {
type: 'string',
name: undefined,
expression: Expression { value: 'Malformed request' 1},
parent: undefined
}
}
}’
parent: undefined
}
[INFO] State 1: VIOLATE.

[INFO] checking response state conformance with Path Constraints (HTTP 200):
(declare-const username String)

(declare-const password String)

(assert (not (or (= username "") (= password ""))))

(declare-fun users.find-pos-1610-1692 () String)

(assert (> (str.len users.find-pos-1610-1692) 0))

[INFO] SAT:

(define-fun password () String
uCu)

(define-fun username () String
"B")

(define-fun users.find-pos-1610-1692 () String
"A")

[INFO] response matches with code "200" and symbolic object body with the following fields:

0 {

message: Value {
type: 'string',
name: undefined,
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expression: Expression { value: 'Login successful' },
parent: undefined
}’
username: Value {
type: 'symbol',
name: 'username',
expression: Expression { value: { type: 'string', smt: 'username' } },
parent: undefined
}
}
[INFO] State 2: CONFORM.

[INFO] checking response state conformance with Path Constraints (HTTP 401):
(declare-const username String)

(declare-const password String)

(assert (not (or (= username "") (= password ""))))

(declare-fun users.find-pos-1610-1692 () String)

(assert (not (> (str.len users.find-pos-1610-1692) 0)))

[INFO] SAT:
; (define-fun password () String
IIBlI)
(define-fun username () String
"A")
(define-fun users.find-pos-1610-1692 () String
nn
)

[INFO] response matches with code "401" and symbolic object body with the following fields:
{
message: Value {
type: 'string',
name: undefined,
expression: Expression { value: 'Login failed' },
parent: undefined
}
}
[INFO] State 3: CONFORM.

[INFO] ANALYSIS for endpoint POST /login:
Out of 3 states, 3 are SATisfiable/reachable. In which 2 CONFORMs to specification.

[INFO] Symbolical execution complete

[INFO] FINISHED. VERDICT FOR THE SERVER: VIOLATE
Out of 1 total paths and 1 endpoints specified, O are conforming to the API spec.
The symbolic execution produced 3 states, of which 3 are SATisfiable/reachable and 2 are
< conforming to the API spec.
[INFO] MESSAGES:
[POST /login] VIOLATE: Response status code 400 not specified in swagger API spec.

Done in 2.90s.

Listing C.1: Full program output of running RESTASSURED on the motivating example
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C.2 Program to Generate Arbitrary Number of Branches

To simulate running RESTASSURED on programs with different numbers of branches, we created
a simple script that is able to take a template, and create a program with arbitrary number of
branches. The output of the program is an Express.JS program that looks like the following. To
add more branches, the script will repeat the code block from L38 to L.42 and increment the number
in the condition, up to the specified number of branches minus one, given the existence of the else

branch.

const express = require("express");

; const app = express();

1

const port = 3000;

app.use(express.json());

/*x

* Qopenapi

*x /:

*  post:

* summary: Responds with "Hello World."
* requestBody:

* required: false

* content:

* application/json:
* schema:

* type: object

* properties:

* number :

* type: number
* responses:

* 200:

* description: Successful response with the same text
* content:

* text/plain:

* example: 0

*/

app.post("/", (req, res) => {
if (req.body.number < 1) {
res.send(req.body.number) ;
return;
}
else if (req.body.number < 2) {
res.send(req.body.number) ;
return;
}
// EXAMPLE: the next branch to be added is:
// else if (req.body.number < 3) {
// res.send(req.body.number) ;
// return;
/7
else {
res.send(req.body.number) ;
return;
}
b
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app.listen(port, () => {
console.log( Server listening at http://localhost:${port} ) ;
b;

Listing C.2: Express.JS program with arbitrary number of branches

C.3 Benchmark 5C: Unsatisfied Refinement Predicate

The source code for the benchmark 5C is shown in Listing C.3.

const express = require("express");

const app = express();
const port = 3000;

app.use(express.json());

/*%
* Qopenapi
* /login:
*  post:
summary: Login to the application.
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
username:
type: string
password:
type: string
responses:
200:
description: Login successful.
content:
application/json:
schema:
type: object
properties:
message:
type: string
description: A success message.
username:
type: string
description: Username.
minLength: 3
maxLength: 10
400:
description: Malformed request
content:
application/json:
schema:
type: object

¥R X X X X R X X X K K K K K K K X X X X X X X X X X X K K K X X ¥
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properties:
message:
type: string
description: An error message.
401:
description: Login failed
content:
application/json:
schema:
type: object
properties:
message:
type: string
description: An error message.

o
%)
oK K K K K X K K X K X X ¥

60 */
61 app.post("/login", (req, res) => {
62  const { username, password } = req.body;

64 if (lusername || !password) {

65 res.status(400).json({ message: "Malformed request" 1});
66 return;

67 )} else {

68 if (password === "my_super_secret_password") {

69 res.json({ message: "Login successful", username });
70 } else {

71 res.status(401) .json({ message: "Login failed" 1});

72 }

73 }

71 3);

76 app.listen(port, () => {

77 console.log( Server is running on http://localhost:${port} );
s });

Listing C.3: Source code for benchmark 5C
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Symbols Used in This Thesis

Symbol Description
N Field Name, e.g. username, password, message, ...
T An OpenAPI Type. See Definition 3.1.

Q=N—-T Query Parameters, an array of name-type pairs.
H=N—~T HTTP Headers, an array of name-type pairs.

M MIME media type, e.g. application/json, text/plain, ...
B=M—T HTTP Body, either an array of name-type pairs or a single typed value.
R=(Q,H,B) Request Schema. See Definition 3.2.

C HTTP Response Status Code, e.g. 200, 400, 401, ....

P =(C,H,B) Response Schema. See Definition 3.3.
H:RxP Endpoint Handler Function type definition.

M HTTP Method, e.g. GET, POST, ....

U URI Path, e.g. /login, may contain path parameters.
E=(M,U,H) RESTful API Endpoint. See Definition 3.4.

& RESTful API Specification. See Definition 3.5.

Table D.1: Table of symbols for formalizing OpenAPI specification

Symbol Description

R =(Q,H,B) HTTP Request space accepted by the server.
P'=(C,H,B) HTTP Response space produced by the server.
H': R' — P’  Handler Function Implementation.
& =(M,U,H") RESTful API Endpoint Implementation.
S =& RESTful API Server Implementation. See Definition 3.6.

Table D.2: Table of symbols for formalizing RESTful server implementation
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